
Chapter 1

A Brief Description

We first begin with a brief treatment of some subjects covered in
an Elementary Differential Equations course that we assume you
have taken. Then we describe some qualitative properties of dif-
ferential equations that we are going to study in this book. Many
of the descriptions here will be done with the geometric and phys-
ical arguments to help you see why certain qualitative properties
are plausible and why sometimes we pursue a qualitative analysis
rather than solving differential equations analytically or numeri-
cally. This will give you an opportunity to become familiar with
the objective and terminology of qualitative analysis in a some-
what familiar setting.

1.1 Linear Differential Equations

To provide a background for our discussions, let’s begin with some examples.

Example 1.1.1 To mathematically model the population growth of, say,
a university, the simplest assumption we can make is to assume that the
population grows at a rate proportional (with a proportional constant k)
to its current population of that year. For example, k may be 0.05, which
means the population grows 5% per year. If we use t for the time and x(t)
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for the population at time t, and if we know the population at a time, say
t0, to be x0, (for example, the population is x0 = 18, 000 in year t0 = 2001),
then we can set up the following equation

x′(t) = kx(t), x(t0) = x0. ♠ (1.1)

Eq. (1.1) is an equation involving the derivative of an unknown function
x(t) that we want to solve. Therefore, we define an ordinary differential
equation as an equation involving derivatives of an unknown function with
one variable.

The order of an ordinary differential equation is the highest derivative
of the unknown function that appears in the equation. For example, Eq.
(1.1) is a first-order ordinary differential equation.

A solution of an ordinary differential equation is a function that satisfies
the ordinary differential equation. x(t0) = x0 in Eq. (1.1) is referred to as
an initial condition, an initial value, or an initial data, and Eq. (1.1)
is also called an initial value problem.

Sometimes, we only consider t ≥ t0 in Eq. (1.1) because we are only
concerned with the development in the future time of t0. Next, x(t) in Eq.
(1.1) is a number, thus we say that Eq. (1.1) is a differential equation
in � (or �1), where � = (−∞,∞). We also say that Eq. (1.1) is a scalar
equation.

Since the study in this book doesn’t involve partial differential equations,
sometimes we will use “differential equations” or just “equations” to mean
“ordinary differential equations.”

The direction field consisting of direction vectors (or slope vectors) for
Eq. (1.1) with k > 0 is given in Figure 1.1.

For Eq. (1.1), x(t) ≡ 0 is a solution (with its initial value being zero),
and is called a constant solution. Otherwise, we assume x(t) �= 0 such
that Eq. (1.1) can be written as

x′(t)
x(t)

= k. (1.2)

Now, we can use the method of separation of variables to solve Eq. (1.2).
That is, we separate the variables x and t and write Eq. (1.2) as

1
x

dx = kdt,

then solve ∫ 1
x

dx =
∫

kdt,
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x

t

Figure 1.1: Direction field of Eq. (1.1) with k > 0

and obtain
ln |x| = kt + C.

Finally, we derive the solution of Eq. (1.1), given by

x(t) = x0e
k(t−t0). (1.3)

For the solution given in (1.3), we have the pictures in Figure 1.2 and
Figure 1.3.
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Figure 1.2: Solutions of Eq. (1.1) with k > 0

Accordingly, we say that in Eq. (1.1), the population grows exponen-
tially when k > 0, and the population decays exponentially when k < 0.
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Figure 1.3: Solutions of Eq. (1.1) with k < 0

Now, if we do not solve Eq. (1.1), but, instead, start at (t0, x0) and
flow along the directions of the direction field in Figure 1.1 as t increases,
then the curve obtained, see Figure 1.4, matches well with the picture of
solutions in Figure 1.2. The point of view of regarding solutions as curves
flowing in a direction field will be very useful for understanding some results
in differential equations, especially when we study the geometric aspects of
differential equations.
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t

Figure 1.4: A curve obtained using the direction field in Figure 1.1

In Eq. (1.1), if we take t0 to be 0, (for example, treat year 2001 as year
0), then Eq. (1.1) becomes
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x′(t) = kx(t), x(0) = x0, (1.4)

and the solution is now given by

x(t) = x0e
kt.

Consider Eq. (1.1). If we assume further that other factors, such as those
from the environment, are also involved in the population growth, then we
may replace Eq. (1.1) by

x′(t) = kx(t) + f(t), x(t0) = x0, (1.5)

for some continuous “factor” function f(t).
In some applications, the proportional constant k may change with the

time t, thus in those cases we need to replace k by a continuous function in
t, say k(t). Then Eq. (1.5) becomes

x′(t) = k(t)x(t) + f(t), x(t0) = x0. (1.6)

Sometimes, other forms of differential equations are also encounted in
applications, as in the following examples.

Example 1.1.2 (Restricted population growth) In many applications,
it is assumed that the population (x(t)) does not exceed some number C,
called the carrying capacity of the environment; it is also assumed that the
population grows at a rate proportional (with a constant k) to the difference
between C and the population at that time. Then x(t) satisfies

x′(t) = k[C − x(t)], x(t0) = x0. ♠ (1.7)

Example 1.1.3 (Newton’s law of cooling) Newton’s law of cooling
states that the temperature of a subject (T (t)) changes at a rate proportional
(with a constant k) to the difference between the temperature of the subject
and the temperature of the surrounding medium (Tm). Then we have

T ′(t) = k[Tm − T (t)], T (t0) = T0. ♠ (1.8)

Eq. (1.7) and Eq. (1.8) are of the same form, so we only need to look
at Eq. (1.7). Now, x(t) = C is a constant solution. If x(t) �= C, then, using
separation of variables, we solve

1
C − x

dx = kdt, (1.9)
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then the solution of Eq. (1.7) is given as

x(t) = C − [C − x0]e−k(t−t0), t ≥ t0. (1.10)

The direction field and the picture of the solutions for Eq. (1.7) are given
in Figure 1.5 and Figure 1.6. Again, they match well.

C

x

t

Figure 1.5: Direction field of Eq. (1.7) with k > 0

C

x

t

Figure 1.6: Solutions of Eq. (1.7) with k > 0

Eq. (1.7) and Eq. (1.8) are solved as above. However, we point out
that they can also be formulated as Eq. (1.5) or Eq. (1.6), which has
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more applications. For example, Eq. (1.8) can be formulated as T ′(t) =
−kT (t) + kTm.

Now, let’s solve Eq. (1.5). We note that when f = 0, Eq. (1.5) becomes
Eq. (1.1), whose solution is given by x0e

k(t−t0). Then we use the method
of variation of parameters, that is, we determine the conditions on an
unknown function C(t) such that C(t)ek(t−t0) is a solution of Eq. (1.5). This
leads to

C ′(t)ek(t−t0) + C(t)kek(t−t0) = kC(t)ek(t−t0) + f(t),

hence,

C(t) = x0 +
∫ t

t0
e−k(s−t0)f(s)ds.

Therefore, we obtain the solution of Eq. (1.5), given by the variation of
parameters formula

x(t) = ek(t−t0)
[
x0 +

∫ t

t0
e−k(s−t0)f(s)ds

]

= ek(t−t0)x0 +
∫ t

t0
ek(t−s)f(s)ds. (1.11)

If we define T (t) = ekt, then (1.11) can be written as

x(t) = T (t − t0)x0 +
∫ t

t0
T (t − s)f(s)ds. (1.12)

Note that T (t) = ekt satisfies the following property:

(S1). T (0) = 1,

(S2). T (t)T (s) = T (t + s), t, s ≥ 0.

In some literature, this property is called the “semigroup property.”
To solve Eq. (1.6), we can use the idea of variation of parameters again

(see an exercise) and let f = 0 first and derive the solution x0e

∫ t

t0
k(s)ds

. We

then determine the conditions on C(t)e
∫ t

t0
k(s)ds

from

C ′(t)e
∫ t

t0
k(s)ds

+ C(t)k(t)e
∫ t

t0
k(s)ds

= k(t)C(t)e
∫ t

t0
k(s)ds

+ f(t),
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and obtain the solution of Eq. (1.6), given by another variation of param-
eters formula

x(t) = e

∫ t

t0
k(s)ds

[
x0 +

∫ t

t0
e
−
∫ s

t0
k(h)dh

f(s)ds
]

= e

∫ t

t0
k(s)ds

x0 +
∫ t

t0
e
∫ t

s
k(h)dhf(s)ds. (1.13)

In this case, if we define U(t, s) = e
∫ t

s
k(h)dh, then (1.13) can be written

as

x(t) = U(t, t0)x0 +
∫ t

t0
U(t, s)f(s)ds. (1.14)

Now, U(t, s) = e
∫ t

s
k(h)dh satisfies the following property:

(E1). U(t, t) = 1, t ≥ t0,

(E2). U(t, r)U(r, s) = U(t, s), t0 ≤ s ≤ r ≤ t.

This property is called the “evolution system property” in some lit-
erature.

Some higher order differential equations can also be treated in a similar
way. One example is given below.

Example 1.1.4 Consider the second-order differential equation

x′′(t) + a1x
′(t) + a2x(t) = f(t).

Besides using the characteristic equations, we can define

x1(t) = x(t), x2(t) = x′(t),

then,{
x′

1(t) = x′(t) = x2(t),
x′

2(t) = x′′(t)=−a2x(t) − a1x
′(t)+f(t)=−a2x1(t) − a1x2(t)+f(t).

(1.15)

Thus, writing in matrix and vector notations, we obtain[
x1(t)
x2(t)

]′
=

[
0 1

−a2 −a1

] [
x1(t)
x2(t)

]
+

[
0

f(t)

]
. (1.16)

Eq. (1.16) is called a differential equation in �2, which looks like Eq.
(1.5) when k in Eq. (1.5) is regarded as a 2× 2 matrix and x as a vector in
�2. ♠
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For equations in �2, solutions should be viewed in the (t, x1, x2) space,
and the direction field should be drawn in the (x1, x2) space, as in the fol-
lowing example.

Example 1.1.5 Consider {
x′

1 = x2,
x′

2 = −x1.
(1.17)

We find that x1(t) = sin t and x2(t) = cos t is a solution, and the picture
in the (t, x1, x2) space is shown in Figure 1.7. The direction field of Eq.
(1.17) is shown in Figure 1.8.

(To get Figure 1.8, you can check a few points. For example, at the point
[x1, x2]T = [0, 1]T (here T means the transpose, so [0, 1]T is a 2 × 1 vector[

0
1

]
in �2), the direction in the field is [x′

1, x′
2]

T = [x2,−x1]T = [1, 0]T ; at

the point [x1, x2]T = [1, 1]T , the direction in the field is [x2,−x1]T = [1,−1]T ;
at the point [x1, x2]T = [1, 0]T , the direction in the field is [x2,−x1]T =
[0,−1]T , and so on. Thus it goes like a circle in the clockwise direction.
Again, the picture of the solution x1(t) = sin t, x2(t) = cos t and the direction
field in Figure 1.8 match well.) ♠

t

x 1
x 2

Figure 1.7: Solutions of Eq. (1.17) in the (t, x1, x2) space

Observe that when the right-hand side of Eq. (1.5) or Eq. (1.6) is
regarded as a function in (t, x), the term kx or k(t)x involving x is linear in
x. Thus, in this sense, Eq. (1.5) and Eq. (1.6) are called linear differential
equations. When k and k(t) in Eq. (1.5) and Eq. (1.6) are regarded as
n × n matrices and x as an n × 1 vector, Eq. (1.5) and Eq. (1.6) are called
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x
1

x
2

Figure 1.8: Direction field of Eq. (1.17) in the (x1, x2) space

linear differential equations in �n. For equations in �n, n ≥ 3, if the
t direction is also added, then we end up with something that is at least of
four dimensions; hence, we lose geometric view because humans can only see
objects of at most three dimensions. In those cases, especially in determining
how close a solution is to the zero solution (when the zero is a solution), or
in determining the distance from a point on the solution curve to the t-axis,
we simply draw pictures in a plane, and treat �n as one dimensional, or use
the vertical direction to denote the distance of a solution to the zero solution
(t-axis, when the zero is a solution), as shown in Figure 1.9.

We will see in Chapter 3 that the solution formulas (1.12) and (1.14),
as well as the semigroup and evolution system properties derived for one-
dimensional equations are also valid for all linear differential equations in
�n, n ≥ 1, and thereby constitute a complete and elegant theory for linear
differential equations.

1.2 The Need for Qualitative Analysis

Our problems are almost solved, at least for finding solutions, if we only
need to deal with linear differential equations. However, we are living in a
complex world, and in most applications, such as those in biology, chemistry,
and physics, we have to deal with nonlinear differential equations, that
is, the differential equations where the terms involving the unknown function
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x

t

(Rn)

Figure 1.9: A solution in the �×�n space viewed in the (t, x) plane where
�n is treated as the x direction

x are not linear in x, as in the following examples.

Example 1.2.1 (Logistic equation) The exponential growth of x′ = kx,
which was studied around 1800, was used by some economists to argue that
human misery is inevitable because population grows exponentially fast and
supplies cannot keep up. In 1845, the Belgian mathematician P. Verhulst
argued that to get better models, the proportional constant k of x′ = kx
should be replaced by C−x, where C is the carrying capacity; and proposed
the following equation,

x′(t) = ax(t)[C − x(t)], x(t0) = x0, t ≥ t0, (2.1)

where a and C are positive constants. The model is used to accommodate the
situations that when the population x(t) is small, the rate x′(t) ≈ aCx(t),
thus the population grows exponentially; when x(t) approaches C but is still
less than C, the rate x′(t) decreases and is still positive, thus the population
is still growing but at a slow rate; finally, when x(t) is large enough (x > C),
the rate x′(t) < 0, therefore the population decreases. These can be seen
from the graph of the function f(x) = ax[C − x] = −ax2 + aCx in Figure
1.10. Verhulst called the solution curves of Eq. (2.1) “logistic curves,” from
a Greek word meaning “skilled in computation.” Nowadays, equations of the
form of Eq. (2.1) are called “logistic equations.” After a change in function
x
C → x, Eq. (2.1) can be replaced by

x′(t) = rx(t)[1 − x(t)], x(t0) = x0, t ≥ t0, (2.2)
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where r = aC. (Some analysis of Eq. (2.1) and Eq. (2.2) will be given
later.) ♠

f(x)

0

C

x

Figure 1.10: The graph of the function f(x) = ax[C − x] = −ax2 + aCx

Example 1.2.2 Let’s look at Eq. (1.6) again, but now assume that the
function f(t) is also determined by the unknown function x. Then we need
to replace f(t) by a function f(t, x) that may be nonlinear in x, such as
f(t, x) = sin(tx). Now we have

x′(t) = k(t)x(t) + sin(tx(t)). ♠ (2.3)

Example 1.2.3 (Lotka-Volterra competition equation) Lotka-Volterra
competition equation states that


x′

1 = β1x1(K1 − x1 − µ1x2),
x′

2 = β2x2(K2 − x2 − µ2x1),
x1(0) ≥ 0, x2(0) ≥ 0,

(2.4)

where βi, Ki, µi, i = 1, 2, are positive constants and x1(t), x2(t) are two
populations. If the populations x1 and x2 grow and decay independently
of each other, then the constants µ1 and µ2 will not appear in Eq. (2.4),
resulting in two independent differential equations where each is of the form
of a logistic equation. However, if the two populations compete for a shared
limited resource (space or a nutrient, for example), and each interferes with
the other’s utilization of it, then the growth or decay of one population will
affect the well-being or fate of the other one. Now µ1 and µ2 will appear in
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Eq. (2.4), and this explains why Eq. (2.4) is proposed. For detailed studies
in this area, see for example, May [1973] and Smith [1974]. ♠

s

θ

θ

m

mg

Figure 1.11: Motion of a simple pendulum

Example 1.2.4 (A simple pendulum) Figure 1.11 shows a rigid sim-
ple pendulum of length l oscillating around the vertical downward position.

It is assumed that the mass of the rod of the pendulum is negligible with
respect to the mass m at the end of the pendulum. Let θ = θ(t) be a function
in the time variable t measuring the angle formed by the pendulum and the
vertical downward direction, and let s be the arc length in the figure formed
by the path of the end of the pendulum starting from the vertical downward
position. Then s = s(t) is a function in t and s′(t) is the velocity of the end
of the pendulum along the arc s (or in a direction tangential to the arc s).
Now, the gravity of the pendulum is mg, hence, from the small triangle in
the figure, the component of gravity in the direction tangential to the arc s
is

−mg sin θ,

(the minus sign is needed because, for example, when the pendulum moves
away, the force of gravity will try to drag the pendulum back). Next, assume
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that the damping or resistance is linear and is in the opposite direction of
the velocity s′(t), given in the form of

−τs′(t)

for some constant τ ≥ 0. Then, from Newton’s second law of motion, which
says, in this case, that

(m)(the tangential acceleration)
= the tangential component of the gravitational force

+ the damping,

we derive

ms′′(t) = −mg sin θ(t) − τs′(t). (2.5)

Since s
θ = 2πl

2π , we get s = lθ. Hence Eq. (2.5) becomes

mlθ′′(t) = −mg sin θ(t) − τ lθ′(t). (2.6)

Simplifying, we get the motion of a simple pendulum, given by the
following differential equation,

θ′′(t) + kθ′(t) + q sin θ(t) = 0, (2.7)

where k ≥ 0, q > 0 are constants, with k related to a damping term, and
θ(t) measures the angle formed by the pendulum and the vertical downward
position. ♠

In general, for the equations in physics governed by Newton’s second law
of motion, such as the motions concerning oscillations, the following type of
second-order differential equations

x′′ + f(t, x, x′)x′ + g(x) = p(t) (2.8)

are subjects of intensive studies. Here, f usually represents a damping or
friction term, such as k in Eq. (2.7); g represents a restoring force, such as
q sin θ(t) in Eq. (2.7); and p is an externally applied force.

Eq. (2.8) includes the famous Lienard-type equations

x′′ + f(x)x′ + g(x) = 0, (2.9)
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where xg(x) > 0 if x �= 0, which includes the well-known van der Pol
equation

x′′ + (x2 − 1)x′ + x = 0, (2.10)

named after Lienard [1928] and van der Pol [1927] for their important con-
tributions in the analysis of the equations and their applications concerning
sustained oscillations, the modeling of the voltage in a triode circuit and also
the human heartbeat.

In Examples 1.2.1–1.2.4, the unknown function x appears nonlinearly,
such as x2 and sin(tx), thus those differential equations are called nonlinear
differential equations. Certain nonlinear differential equations can be
solved analytically, meaning that the formulas for solutions can be derived
analytically. For example, the logistic equation in Example 1.2.1 can be
solved analytically by rewriting the equation as

x′

ax[C − x]
= 1, ([C − x]x �= 0),

then, using separation of variables and partial fractions, one obtains (see an
exercise)

x(t) =
Cx0

x0 + [C − x0]e−aC(t−t0)
, t ≥ t0. (2.11)

However, most nonlinear differential equations, such as those in
Examples 1.2.2–1.2.4, cannot be solved analytically, that is, no
formulas for solutions are available. (Try it to see why.)

Now, the question is: What do we do for general nonlinear dif-
ferential equations? It is true that in most applications, differential
equations are handled by numerical approximations with the help of power-
ful computers, and evidently courses in numerical methods are very popular
nowadays. Students who have taken such courses may want to use numeri-
cal approximation methods to approximate solutions of nonlinear differential
equations they cannot solve analytically.

But wait a minute and think about this: If we do not even know that a
solution exists in the first place, then what are we approximating? Another
question to ask is: Suppose an approximation gives one solution, and we
then use a different way to make an approximation, are we sure that we
will get the same solution? If we don’t get the same solution, then which
solution do we want to use in order to explain the physical situation that we
are modeling using the differential equation?
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A further question to consider is that to determine some asymptotic
properties (properties of solutions for large time variable t), even though
numerical solutions can be carried out to suggest certain properties, they
are obtained through discretization on finite intervals. They reveal certain
properties that are only valid for the limited numerical solutions on finite
intervals and, therefore, cannot be used to prove the properties on the whole
interval of all solutions of the original differential equations.

These questions and remarks give the reason why, besides learning some
numerical methods, we also need a theory on qualitatively analyzing
differential equations, that is, deriving certain properties qualitatively
without solving differential equations analytically or numerically.

1.3 Description and Terminology

To get some basic idea of what do we mean by qualitative analysis or
qualitative theory, let’s look at the following analysis of the logistic equa-
tion (2.1).

Look at Figure 1.10. We see that f(x) = ax[C − x] = 0 has two roots:
x = 0 and x = C. Now, define x1(t) = 0, x2(t) = C, t ≥ t0, then x1(t)
and x2(t) are both constant solutions of Eq. (2.1) (with their corresponding
initial values). Since x1 and x2 are constants, or will “stay put” for all t ≥ t0,
they are also called steady solutions, critical points, or equilibrium
points.

Furthermore, assume x(t) > 0 is another solution (we need x ≥ 0 to
represent the population). Then we have x′ = ax[C − x] > 0 if 0 < x < C;
and x′ = ax[C − x] < 0 if x > C. Therefore, on the x-axis, the solutions
with initial values in (0, C) will “flow” monotonously to C from the left-
hand side of C as t increases; and solutions with initial values bigger than
C will flow monotonously to C from the right-hand side of C as t increases,
see Figure 1.12. (Think of a basketball that is rolling on the ground.)

Accordingly, we have the picture in Figure 1.13, which tells us very
roughly what the solutions should look like.

The concavity in Figure 1.13 is determined based on the increasing or
decreasing of x′(t). For example, when 0 < x(t) < C

2 , x(t) increases as t
increases (because in Figure 1.12, x moves to the right on the x-axis when
0 < x < C); hence, x′(t) = ax(t)[C − x(t)] increases in t (because now
f(x) = ax[C −x] increases in Figure 1.12), thus the function x(t) is concave
up. When C

2 < x(t) < C, x(t) increases in t; hence, x′(t) = ax(t)[C −
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0

C

f(x) = ax[C-x]

C/2

> >

x

Figure 1.12: Flows of the solutions of a logistic equation on the x-axis

x(t)] decreases in t (because now f(x) = ax[C − x] decreases), therefore the
function x(t) is concave down. The case for x(t) > C can also be determined
similarly, (see an exercise).

Of course, in this special case, Eq. (2.1) can be solved and the formula
(2.11) for the solutions can be used to check these properties. But we do
want to point out that it is much easier to determine the concavity of the
solutions from Figure 1.12 than by looking at the formula (2.11). To see
why, you should take the second derivative of x(t) given in (2.11) and then
see how difficult it is to determine its signs, (see an exercise).

In Figure 1.12, x1(t) = 0 “sends other solutions away,” hence it is called
a repeller or source, or we say that the critical point (or the con-
stant solution) x1 = 0 is unstable. However, x2(t) = C attracts other
solutions, thus it is called a sink or an attractor, or we say that the crit-
ical point (or the constant solution) x2 = C is stable. Articles can
be found, for example, in Krebs [1972] and Murray [1989], indicating that
the logistic equation (2.1) provides a good match for the experiments done
with colonies of bacteria, yeast, or other simple organisms in conditions of
constant food supply, climate, and with no predators. However, results of
experiments done with fruit flies, flour beetles, and other organisms that
have complex life cycles are more complex and do not match well with the
logistic equation, because other facts are involved, including age structure
and the time-delay effect.

In the above, we derived certain properties, including stabilities, of the
solutions of the logistic equation (2.1) without solving it. These properties
are called qualitative properties because they only tell us the certain ten-
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concave up

concave down

concave up

Figure 1.13: A rough sketch of the solutions of a logistic equation according
to the flows

dency of how the solutions will behave, and no quantitative information is
given. However, in many applications in sciences, the qualitative properties
of the equations are the only things we care about, especially when analyt-
ical solutions are not available. Therefore, it is very valuable to learn some
qualitative analysis of differential equations, as it adds to your knowledge
of the subject and helps you get well equipped with tools useful in your
applications of differential equations in your future studies and careers.

The first qualitative property we will study is existence and uniqueness
theory. This can be used to verify that some differential equations have
solutions and these solutions are uniquely determined without solving the
differential equations analytically. This theory will also provide a foundation
for numerical approximation methods. Based on existence and uniqueness
of solutions, we will study other qualitative properties in this book, such as
bifurcation, chaos, stability, boundedness, and periodicity, as we explain in
the following.

Example 1.3.1 (Euler’s buckling beam) A famous example in physics
used to introduce the notion of bifurcation is Euler’s buckling beam studied
by Euler [1744]. If a small weight is placed on the top of a beam shown
in Figure 1.14, then the beam can support the weight and stay vertical.
When the weight increases a little, the position of the beam will change a
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Figure 1.14: Euler’s buckling beam

little and remain nearly vertical. Accordingly, this change in position of the
beam is called a quantitative change. However, if you keep increasing
the weight, then there will be a moment that the beam cannot take it any
more and will buckle, or there is a critical value such that when the weight
increases beyond that value the beam will buckle, see Figure 1.14.

Now, the difference is that the beam had undergone a qualitative
change: from nearly vertical to a buckling position. And with some sym-
metry assumption, the beam can buckle in all directions.

Therefore, we find that for some systems, when some parameters, such
as the weight here, are varied and pass some critical values, the systems
may experience some abrupt changes, or undergo some qualitative changes.
These qualitative changes are generally called bifurcations, and the pa-
rameter values at which bifurcations occur are called bifurcation points
or bifurcation values. Euler’s buckling beam will be analyzed in some de-
tail in Chapter 6 (Bifurcation), where a differential equation describing the
motion of the beam will be given, and the bifurcation value, called Euler’s
first buckling load, will be calculated. ♠

Let’s look at one more example, which can also explain why the word
“bifurcation” is used.

Example 1.3.2 Consider the scalar differential equation

x′ = µ − x2, (3.1)

where µ ∈ � is a parameter. If µ < 0, then Eq. (3.1) has no critical point
(that is, x′ = µ − x2 = 0 has no solution), or the curve y = µ − x2 will not
intersect the x-axis, see Figure 1.15.
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Figure 1.15: Graph of y = µ − x2 and the critical points of x′ = µ − x2

When µ increases to 0 from below, the graph of y = µ−x2 moves up and
intersects the x-axis when µ = 0, in which case, one critical point appears
at x = 0. If µ continues to increase, then µ > 0 and hence the graph of
y = µ − x2 will cross the x-axis and then two critical points appear at

x =
√

µ and x = −√
µ. (3.2)

Now, if we treat µ as the independent variable and treat the correspond-
ing critical point x (if any) as a function of µ, and graph those functions
in one (µ, x) plane, then we get Figure 1.16, from which we find that for
µ < 0, there is no critical point (or function x(µ) is not defined for µ < 0);
however, when µ increases and passes 0, then suddenly, two branches of
critical points appear according to x =

√
µ and x = −√

µ, or a “bi”-furcation
takes place. This explains why the word “bifurcation” is used. In Eq. (3.1),
the total number of critical points is also a qualitative property of the sys-
tem, therefore, when the parameter µ is varied and passes 0, the system
undergoes a qualitative change: the number of critical points changes from
0 to 2. Thus, we say that for Eq. (3.1), when the parameter µ is varied, a
bifurcation occurs at the bifurcation value µ = 0. ♠

Example 1.3.3 Let x0 be any fixed number in [0, 1] and consider a recursion
relation

x1 = r sinπx0, x2 = r sinπx1, · · · , xm+1 = r sinπxm, m = 0, 1, 2, · · · ,
where r ∈ [0, 1] is regarded as a parameter. Let’s do it with x0 = 0.5, r = 0.6,
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Figure 1.16: The branching of two sets of critical points determined by
x = ±√

µ, or a bifurcation takes place

and use a software called Maple, then the code

x[0]:=0.5;
for i from 1 by 1 to 100 do
x[i]:=evalf(0.6*sin(Pi*x[i-1]));
od;

gives the following result (note that we use x[m] for xm because it is what
you will see in Maple).

x[1] = .6, x[2] = .570633, x[3] = .585288, x[4] = .578590, x[5] = .581804,
x[6] = .580294, x[7] = .581011, x[8] = .580672, x[9] = .580833, x[10] =
.580757, x[11] = .580793, x[12] = .580776, x[13] = .580784, x[14] = .580780,
x[15] = .580782, x[16] = .580781, x[17] = .580781, x[18] = .580781, x[19] =
.580781, x[20] = .580781, · · · · · ·
x[81] = .580781, x[82] = .580781, x[83] = .580781, x[84] = .580781, x[85] =
.580781, x[86] = .580781, x[87] = .580781, x[88] = .580781, x[89] = .580781,
x[90] = .580781, x[91] = .580781, x[92] = .580781, x[93] = .580781, x[94] =
.580781, x[95] = .580781, x[96] = .580781, x[97] = .580781, x[98] = .580781,
x[99] = .580781, x[100] = .580781.

Accordingly, we find that

xm → .580781 as m → ∞.
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Or you can imagine that when you say “Order!” the numbers xm will
listen to you and order themselves to approach .580781.

Next, let’s still use x0 = 0.5 but replace r = 0.6 with r = 0.77 in the
above code, then we get

x[1] = .77, x[2] = .509210, x[3] = .769677, x[4] = .509794, x[5] = .769635,
x[6] = .509871, x[7] = .769629, x[8] = .509881, x[9] = .769628, x[10] =
.509882, x[11] = .769628, x[12] = .509883, x[13] = .769628, x[14] = .509883,
x[15] = .769628, x[16] = .509883, x[17] = .769628, x[18] = .509883, x[19] =
.769628, x[20] = .509883, · · · · · ·
x[81] = .769628, x[82] = .509883, x[83] = .769628, x[84] = .509883, x[85] =
.769628, x[86] = .509883, x[87] = .769628, x[88] = .509883, x[89] = .769628,
x[90] = .509883, x[91] = .769628, x[92] = .509883, x[93] = .769628, x[94] =
.509883, x[95] = .769628, x[96] = .509883, x[97] = .769628, x[98] = .509883,
x[99] = .769628, x[100] = .509883.

In this case, the numbers xm will “pile up” at the two values

{.509883, .769628},
or the sequence {xm} repeats each of the two values after every two itera-
tions, in which case the set of the two values {.509883, .769628} looks like a
“cycle” with period 2.

Finally, let x0 = 0.5 and r = 0.9, then we get

x[1] = .9, x[2] = .278115, x[3] = .690053, x[4] = .744288, x[5] = .647712,
x[6] = .804821, x[7] = .517917, x[8] = .898574, x[9] = .281945, x[10] =
.696955, x[11] = .733141, x[12] = .669193, x[13] = .775825, x[14] = .582725,
x[15] = .869776, x[16] = .358013, x[17] = .811936, x[18] = .501337, x[19] =
.899992, x[20] = .278136, . . . . . .
x[81] = .899132, x[82] = .280447, x[83] = .694267, x[84] = .737523, x[85] =
.660844, x[86] = .787522, x[87] = .557134, x[88] = .885540, x[89] = .316696,
x[90] = .754849, x[91] = .626626, x[92] = .829721, x[93] = .458815, x[94] =
.892477, x[95] = .298264, x[96] = .725220, x[97] = .683961, x[98] = .753835,
x[99] = .628681, x[100] = .827452.

Now, the placement of those numbers are so complex and unpredictable
that no matter how loud you shout “Order!!” nobody will listen! So you may
want to say “It is chaotic!” If you do, then you are right, because that is
exactly the word we are going to use to describe the situation. Of course, you
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probably want to ask “what does this have to do with differential equations?”
We will explain in Chapter 7 that the recursion relation xm+1 = r sinπxm,
or in general xm+1 = f(xm), defines a “difference equation,” or a “map,”
which is a discrete-time version of a differential equation. ♠

Example 1.3.3 indicates that for some differential equations, the behavior
of solutions are very complicated and showing “no orders,” therefore, they
are generally described as chaos. Think about how strange things are in
Example 1.3.3 because the maps xm+1 = 0.6 sinπxm, xm+1 = 0.77 sinπxm,
and xm+1 = 0.9 sinπxm look “almost the same,” so how could the small
difference in the coefficients of 0.6, 0.77, and 0.9 make the sequences {xm} of
the iterations behave so differently? This is, in fact, the key to understand
bifurcation and chaos: When parameters are different, the corresponding
systems could behave completely differently.

Besides the above discrete maps, solutions of continuous systems (that is,
differential equations) can also be chaotic. Especially for differential equa-
tions in �n, n ≥ 3, solutions are moving in space and could get twisted and
twisted and become complex and strange. A famous equation is given by
the Lorenz system,




dx
dt = 10(y − x),
dy
dt = 28x − y − xz,
dz
dt = xy − (8/3)z,

(3.3)

in a milestone paper of Lorenz [1963] (in fact, the paper was reprinted in
SPIE Milestone Series, 1994). The system was used to model the weather
forecast (see Chapter 7 for some details). Despite of its innocuous looks,
the numerical experiments of Lorenz [1963] showed that the solutions of Eq.
(3.3) behave in a very complex and strange fashion. For example, the (x, z)
plane projection of a three-dimensional solution of the Lorenz system is given
in Figure 1.17.

The solution in Figure 1.17 does not intersect itself in �3, so the crossings
in Figure 1.17 are the result of projection in �2. Here, the solution will cruise
a few circuits on one side, then suddenly moves to the other side and cruises
a few circuits, and then suddenly moves back · · ·. This process will continue
forever, such that the solution will wind around the two sides infinitely many
times without ever settling down. The solution also moves around the two
sides in an unpredictable fashion. Lorenz showed with numerical experiments
that the system (3.3) has an attractor whose properties are so strange and
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Figure 1.17: The (x, z) plane projection of a three-dimensional solution of
the Lorenz system (3.3)

complex that it is called a strange attractor, a very important subject in
the study of chaos.

However, we also need to point out that solutions of differential equations
in �2 do behave in an “orderly” or “predictable” fashion, due to another
milestone result: the Poincaré-Bendixson theorem in �2, to be studied in
Chapter 8.

For the subject on stability, let’s look at the following examples.

Example 1.3.4 Consider the scalar differential equation x′(t) = 0, x(t0) =
x0. The solution is given by x(t) = x0, t ≥ t0, see Figure 1.18.

In particular, φ(t) = 0, t ≥ 0, is a solution (with the initial value being
zero). Now, for any t0 ≥ 0 and any other initial value x0 that is close to φ,
the corresponding solution x(t) = x0 will stay close to φ for t ≥ t0. ♠

According to the situation in Example 1.3.4, we say that the solution
φ is stable, which we define as follows for a general solution φ that may be
nonzero:
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Figure 1.18: Solutions of x′(t) = 0 concerning stability

A solution φ defined on [tφ,∞) is said to be stable if for any ε > 0 and
any t0 ≥ tφ, there exists a δ = δ(ε, t0) > 0 (δ(ε, t0) means δ is determined
by ε and t0; typically δ ≤ ε), such that if the initial value x0 satisfies |x0 −
φ(t0)| ≤ δ, then the corresponding solution x(t) starting from t0 satisfies
|x(t) − φ(t)| ≤ ε for t ≥ t0. See Figure 1.19.

φ(t)

t

x

t
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tφ

ε
δ

δ
x(t)

Figure 1.19: Definition of a stable solution φ
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In physics applications, a solution φ may represent certain behavior or
property of some physical experiment, and x0 may be the initial measure-
ment of certain quantity. For example, in some experiment, we need to
put one gallon of acid initially to create a certain reaction, which inevitably
involves some errors in measurements or approximations. That is, in appli-
cations, real data always have some inherent uncertainty, and initial values
taken from real data are never known precisely. Now, φ being stable means
that the corresponding behavior or property is stable in the sense that a
small change in initial measurement will result in a small change in the be-
havior or property for future time. This idea can be seen further in the
following example.

Example 1.3.5 Consider again the motion of a simple pendulum given by

θ′′(t) + kθ′(t) + q sin θ(t) = 0, t ≥ t0, (3.4)

where k ≥ 0, q > 0 are constants, with k related to a damping term. If we
place this pendulum in honey or any viscous fluid, and if the inertia term
(related to θ′′) is relatively small compared to the strong damping (related
to kθ′) of the viscous fluid, and if the angle θ(t) is also small, then we can
neglect the θ′′(t) term and approximate sin θ with θ and then consider the
differential equation

θ′(t) = −(
q

k
)θ(t), t ≥ t0, (3.5)

where we have assumed k > 0 since a damping exists. The solution of Eq.
(3.5) is given by

θ(t) = θ0e
− q

k
(t−t0), t ≥ t0,

and we have
lim
t→∞ θ(t) = lim

t→∞ θ0e
− q

k
(t−t0) = 0.

Now, the interpretation in physics is that φ(t) = 0 is a solution corre-
sponding to the steady state (downward vertical position), if the pendulum is
moved slightly from the downward vertical position, then, due to the strong
damping of the medium, the pendulum tends to the downward vertical posi-
tion but will not cross the downward vertical position, that is, no oscillations
will occur. See Figure 1.20.

That is, in this case, for any initial value θ0 that is close to φ = 0, the
corresponding solution θ(t) = θ0e

− q
k
(t−t0) will not only stay close to φ for

t ≥ t0, but we also have limt→∞ θ(t) = limt→∞ θ0e
− q

k
(t−t0) = 0 = φ, or

lim
t→∞ |θ(t) − φ(t)| = 0. ♠ (3.6)
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Figure 1.20: The motion of a pendulum going back to the downward
vertical position without oscillations

In this sense, we say that for Eq. (3.5) of Example 1.3.5, the solution φ
attracts other solutions, or the solution φ is asymptotically stable, see
Figure 1.21.

x

t

φ(t)=0

Figure 1.21: The solution φ = 0 is asymptotically stable

A solution φ being asymptotically stable means, roughly, that φ is stable,
and in addition, one has

lim
t→∞ |x(t) − φ(t)| = 0,

where x is any solution whose initial value is close to φ. Evidently, φ = 0 in
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Example 1.3.4 is stable but not asymptotically stable, because solutions are
given by constants there.

Example 1.3.6 Consider the scalar differential equation x′(t) = 3x(t),
x(0) = x0. The solution is given by x(t) = x0e

3t, t ≥ 0, see Figure 1.22.

x(t) = x
0
e3t

x

t

φ =0

Figure 1.22: Solutions of x′(t) = 3x(t) concerning instability

Now, we also have φ(t) = 0 as a solution. For any other initial value
x0 �= 0, no matter how close it is to φ, the corresponding solution x(t) = x0e

3t

will not stay close to φ for t ≥ 0. In this sense, we say that the solution φ
is unstable. For example, φ = 0 in the logistic equation (2.1) is unstable.

♠

Next, we examine boundedness properties. In Example 1.3.4, where the
solutions are given by x(t) = x0, t ≥ t0, if we specify a range B1 first
(that is, let B1 > 0), then we are able to find a bound B2 > 0 (typically
B2 ≥ B1) such that when an initial value x0 is in the range of B1 (that
is, |x0| ≤ B1), then we can use B2 to bound or control the corresponding
solution for t ≥ t0. In fact, in this case, we can take B2 = B1, such that for
the solution x(t) = x0, t ≥ t0,

|x0| ≤ B1 implies |x(t)| = |x0| ≤ B1 = B2, t ≥ t0.

Accordingly, we say that in Example 1.3.4, the solutions are uniformly
bounded, which is defined as (see Figure 1.23):
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The solutions of a differential equation are said to be uniformly
bounded if for any B1 > 0, there exists a B2 > 0 such that if an initial
value |x0| ≤ B1, then the corresponding solution starting from t0 satisfies
|x(t)| ≤ B2 for t ≥ t0.

x

t

B
1

B2

Figure 1.23: The solutions are uniformly bounded

The solutions of Eq. (3.5) in Example 1.3.5 are also uniformly bounded,
but the solutions in Example 1.3.6 are not uniformly bounded.

Next, let’s consider a related concept. We prescribe a bound B to begin
with, and allow the initial value x0 (at time t0) to be in a range B1 that is
arbitrary, say, maybe B1 > B. Now, in general, B cannot be used to bound
the corresponding solution for t ≥ t0, because when B1 > B, B cannot even
be used to bound the initial value x0 for which |x0| = B1 > B, see Figure
1.24.

Thus, it only makes sense to require that B can be used to bound the
corresponding solution when t is large, say for example, when t ≥ t0 + T ,
where T > 0 is a constant, see Figure 1.25.

The requirement that “solutions be bounded by B when t is large” cannot
be met by the solutions in Example 1.3.4, because the solution is given by
x(t) = x0 there, thus when |x0| = B1 > B, one has |x(t)| = |x0| = B1 >
B, t ≥ t0. But this requirement can be met by the solutions of Eq. (3.5)
in Example 1.3.5, because the solution is given by x(t) = x0e

− q
k
(t−t0) there,

thus when |x0| ≤ B1,

|x(t)| = |x0e
− q

k
(t−t0)| ≤ B1e

− q
k
(t−t0) ≤ B, t ≥ t0 + T,
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Figure 1.24: B cannot be used to bound the solutions on [t0,∞)

is true if we solve T > 0 in such a way that if B1 ≤ B, then let T = 1 (or
any positive number); if B1 > B, then solve T from B1e

− q
k
T = B and obtain

T = −k
q ln B

B1
> 0.

Accordingly, we say that for Eq. (3.5) in Example 1.3.5, the solutions
are uniformly ultimately bounded, which is defined as:

The solutions of a differential equation are said to be uniformly ulti-
mately bounded if there is an (independent or generic) constant B > 0
such that for any B1 > 0, there exists a T > 0 such that if an initial
value |x0| ≤ B1, then the corresponding solution starting from t0 satisfies
|x(t)| ≤ B for t ≥ t0 + T . (See Figure 1.25.)

Therefore, the solutions in Example 1.3.4 and Example 1.3.6 are not
uniformly ultimately bounded.

Notice the difference between uniform boundedness and uniform ultimate
boundedness. In uniform boundedness, the bound B2 can be chosen later
after the initial range B1 is fixed. However, in uniform ultimate boundedness,
the bound B is fixed first, and the initial range B1 can be chosen arbitrarily
later and, of course, can be bigger than B, therefore, B may be used to
bound the solutions only when t is large.

For the study of periodic solutions, consider the following examples.

Example 1.3.7 Consider the scalar differential equation

x′′(t) + x(t) = 0. (3.7)
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Figure 1.25: B may be used to bound the solutions on [t0 + T,∞) for a
large T

We find that x(t) = sin t is a solution. Now,

x(t + 2π) = x(t).

Thus we say that Eq. (3.7) has a periodic solution of period 2π. ♠

Example 1.3.8 For the scalar differential equation x′(t) = 4, the solutions
are straight lines with slope 4, hence the equation has no periodic solution.
In general, let’s consider the scalar differential equation

x′ = f(x), (3.8)

where f is a continuous function in x. If f(x) > 0 (or f(x) < 0) for all x,
then any solution x(t) (if exists) is strictly increasing (or decreasing) in t,
thus Eq. (3.8) has no periodic solutions. If f(x) = 0 has some real roots, for
example, when the curve of f(x) is given in Figure 1.26, then x1(t) = α
and x2(t) = β, t ≥ t0, are two constant solutions, hence they are periodic
solutions (with periods being any positive numbers). Now, x1 and x2 are
the only periodic solutions of Eq. (3.8). Because, for example, if the initial
value of a solution is from (α, β), then, similar to the analysis of the logistic
equation (2.1), the solution will flow toward the critical point β and will
never come back to where it started, thus it cannot be periodic. ♠

This geometric interpretation matches well with some experiments in
physics. For example, consider Example 1.3.5 where a pendulum is placed
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Figure 1.26: The graph of f(x) showing no periodic solutions other than
the constant solutions

in honey or any viscous fluid and the motion of the pendulum is approxi-
mated by the first-order differential equation (3.5), which is governed by Eq.
(3.8). We find in Example 1.3.5 that no oscillations can occur there, that is,
nonconstant periodic solutions do not exist there.

The analysis of Eq. (3.8) indicates that when studying periodic solutions,
other forms of differential equations should be considered. For example,
differential equations in �n, n ≥ 2, may have periodic solutions because now
a solution may follow a “circle” and comes back to where it started.

Now, we have introduced some qualitative properties concerning exis-
tence and uniqueness of solutions, bifurcation, chaos, stability, boundedness,
and periodicity that we will study in this book. Next, we briefly describe
how to derive these properties for some simple differential equations. This
will help you get ready to the ideas and methods that we will use in the rest
of the book for general differential equations.

Example 1.3.9 For existence and uniqueness of solutions, let’s consider the
scalar differential equation

x′(t) = x(t), x(0) = 1, t ≥ 0. (3.9)

To get some idea of what to expect for general (nonlinear) differential
equations, we define the right-hand side of Eq. (3.9) as f(t, x) = x, and
consider the Picard approximations given by
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


x0(t) = x0 = 1,

x1(t) = x0 +
∫ t
0 f(s, x0(s))ds = 1 +

∫ t
0 x0(s)ds = 1 +

∫ t
0 ds = 1 + t,

x2(t) = x0 +
∫ t
0 f(s, x1(s))ds = 1 +

∫ t
0 x1(s)ds = 1 +

∫ t
0 (1 + s)ds,

. . .

xn(t) = x0 +
∫ t
0 f(s, xn−1(s))ds.

Now, an induction shows that

xn(t) = 1 + t +
t2

2
+ · · · + tn

n!
,

consequently, we have
lim

n→∞xn(t) = et,

and we can take a derivative to check that et is really a solution of Eq. (3.9).
♠

Thus, for a general differential equation, we will use the Picard approx-
imations to define a sequence of functions on a certain interval. Then, we
verify, under some conditions this sequence converges to a function that gives
rise to a solution of the equation.

For bifurcations, we will demonstrate, using examples and geometrical
analysis, that under certain circumstances, the implicit function theorem
fails to apply, thus singularities may exist and some qualitative properties of
solutions may change abruptly when some parameters are varied, such as the
creation and disappearance of critical points, or the exchange of stabilities
of critical points.

For chaos, we will look at the discrete maps and the Lorenz system,
and discuss their qualitative property changes, such as the period-doubling
bifurcation cascades and their routes to chaos.

For stability and boundedness, if the differential equations are linear,
then the structure of solutions using the semigroup and evolution system
properties, as given by the variation of parameters formulas (1.12) and (1.14),
can be used to derive the properties. When eigenvalues are available, they
can be used directly to derive the properties. For example, in Example
1.3.4, the eigenvalue is 0, thus φ = 0 is stable but not asymptotically stable;
in Eq. (3.5) of Example 1.3.5, the eigenvalue is − q

k < 0, thus φ = 0 is
asymptotically stable; and the eigenvalue in Example 1.3.6 is 3 > 0, thus
φ = 0 is unstable.

Otherwise, for general nonlinear differential equations, to determine the
stability properties of a solution φ (maybe nonzero in general), we define a
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function V (called a Liapunov function) that is related to the distance
between another solution and the solution φ. (Typically, we make a trans-
formation, after which φ is regarded as the zero solution.) Then we take a
derivative (in time t) of V by plugging in the differential equation and argue,
with certain conditions, that the derivative is V ′ ≤ 0. This indicates that
the distance of another solution and φ is decreasing, which may reveal the
desired properties.

In fact, this idea is already used in the analysis of the logistic equation
(2.1). For example, for the critical point φ = C there, when x(t) > C, the
distance of x(t) and φ is V = x(t) − C. Now d

dtV = x′(t) = ax[C − x] < 0,
thus x(t) flows to φ = C from the right-hand side. When 0 < x(t) < C, the
distance of x(t) and φ is V = C−x(t). Now d

dtV = −x′(t) = −ax[C−x] < 0,
thus x(t) flows to φ = C from the left-hand side. Therefore, the distance
of x(t) and φ = C is always decreasing and hence φ = C is stable, which
is already obtained. As for the critical point φ = 0 there, the distance
of x(t) > 0 and φ is V = x(t). Now, d

dtV = x′(t) = ax[C − x] > 0 for
x(t) ∈ (0, C), thus the distance of x(t) and φ = 0 is increasing and hence
φ = 0 is unstable, which is also already obtained.

To further demonstrate this idea, let’s look at the following example.

Example 1.3.10 Consider the scalar differential equation

x′(t) = −t2x3(t), t ≥ 0. (3.10)

Now, φ = 0 is a solution. To determine the stability of φ = 0, we define

V (t, x) = [x − 0]2 = x2. (3.11)

Let x(t) be a solution of Eq. (3.10), then V (t, x(t)) = x2(t), which
is related to the distance of the solution x(t) and φ = 0. Now, taking a
derivative of V (t, x(t)) in t and plugging in Eq. (3.10), we obtain

d

dt
V (t, x(t)) =

d

dt
x2(t) = 2x(t)x′(t) = 2x(t)[−t2x3(t)]

= −2t2x4(t) < 0, if t > 0, x(t) �= 0. (3.12)

Thus we expect that |x(t) − φ(t)| = |x(t)| → 0 as t → ∞ (which in fact is
true using the so-called Liapunov’s method that we will introduce later).

♠
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In the analysis of the logistic equation (2.1) and Example 1.3.10, the
key idea is that we can obtain certain results without solving the
differential equations. Of course, in the special case of Example 1.3.10, we
can actually solve Eq. (3.10) using separation of variables (see an exercise)
and obtain that

x(t) =
1√

2
3t3 + c

−→ 0, t → ∞, (3.13)

where c is a positive constant.
This idea of deriving certain qualitative properties without solving the

differential equations can also be found in applications in physics.

Example 1.3.11 Consider the scalar differential equation

u′′ + g(u) = 0, u = u(t) ∈ �, (3.14)

where g is nonlinear, g(0) = 0, and satisfies some other conditions. (Note
that Eq. (2.7) of a simple pendulum is a special case of Eq. (3.14) when
k = 0, that is, damping is ignored.) Now, u = 0 is a constant solution or an
equilibrium. In physics, we can think of g(u) as the restoring force acting on
a particle at a displacement u from the equilibrium u = 0, and of u′ as the
velocity of the particle. Then the potential energy at a displacement u from
equilibrium is

∫ u
0 g(s)ds, and the kinetic energy is 1

2(u′)2. Thus, the total
energy is

V (t) =
1
2
[u′(t)]2 +

∫ u(t)

0
g(s)ds. (3.15)

Now, the law of conservation of energy in physics indicates that V (t)
is a constant, or d

dtV (t) = 0. Indeed, we have

d

dt
V (t) = u′u′′ + g(u)u′ = u′[u′′ + g(u)] = 0. (3.16)

That is, without solving Eq. (3.14), we can define a function V in (3.15)
and obtain that the total energy of Eq. (3.14) is a constant, or d

dtV (t) = 0.
This shows the compelling connection of the method of using a Liapunov
function in mathematics and the conservation of energy in physics. Later,
we will verify that this V function for Eq. (3.14) is related to the distance
of the solution u and the equilibrium u = 0, thus some properties can be
derived in this direction, and applications in physics can be carried out. ♠
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For periodicity, we see from Example 1.3.7 that Eq. (3.7) has a periodic
solution of period 2π. Now, for a general differential equation, to find a
periodic solution on interval [0,∞) of period, say for example T > 0, we
need a solution x(t) such that

x(t + T ) = x(t), t ≥ 0.

In particular, when t = 0, we need

x(T ) = x(0).

Accordingly, we define a mapping P such that if x(t) is the unique
solution corresponding to the initial value x(0) = x0, then we let

P (x0) = x(T ),

see Figure 1.27.

t

P(x
0
) = x(T)

x

x
0

T

Figure 1.27: The mapping P : P (x0) = x(T )

Notice that if P has a fixed point, that is, if there exists an x0 such
that

P (x0) = x0,

then we obtain, for the unique solution x(t) with the initial value x(0) = x0,

x(T ) = P (x0) = x0 = x(0).

Based on this, other results can be used to verify that

x(t + T ) = x(t), t ≥ 0,
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T t

x
0

x

2T

Figure 1.28: A T -periodic solution

therefore, x(t) is a periodic solution of period T , see Figure 1.28.
Now, we have briefly described the qualitative properties that we will

study in this book. We hope this will inspire your interest and curiosity
enough to ask some questions, such as “are those concepts about stability
and boundedness the same or what are their differences?” or “how could
things like these be done for general nonlinear differential equations?” or
even questions like “how bad could solutions of differential equations get?”
In doing so, you will be motivated to study the following chapters.

Chapters 1–7 are for upper level undergraduate students, thus we only
present the proofs for those results and theorems where some elementary
arguments using calculus and linear algebra can be produced. (Notice that
the subject on Fixed Point Method in Chapter 2 is optional.) Thus the proofs
are accessible and will give these students a chance to use their knowledge in
calculus and linear algebra to solve some problems before completing their
undergraduate study. For other results whose proofs are too complex and/or
involve other subjects not covered here, we do not prove them; instead, we
argue their plausibility using geometric and physical interpretation.

Of course, if there are time constraints, the following results can be
mentioned without detailed proofs: in Chapter 2, the proofs concerning ex-
istence and existence without uniqueness of solutions, the dependence on
parameters and the maximal interval of existence; in Chapter 3, differen-
tial equations with periodic coefficients and Floquet theory; in Chapter 5,
the proofs concerning Liapunov’s method; in chapters 6–7, certain proofs
concerning bifurcation and chaos.

Chapters 8–12, together with chapters 1–7, are for beginning graduate
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students. Therefore the treatment and proofs of some results are quite in-
volved. Certain results and their analysis are closely related to current re-
search in differential equations, (in fact, a few are taken from some recent
research papers), thereby preparing you to access or even do some research
in qualitative theory of differential equations.

One more thing we would like to point out is that chapters 6–12 are
rather independent of each other and instructors may choose among them
to best fit the last part of the course.

Chapter 1 Exercises

1. Derive (1.10) in Example 1.1.3.

2. Solve the following differential equations.

(a) x′(t) = 5x(t), x(1) = 4.

(b) x′(t) = −4x(t) + t, x(2) = 5.

(c) x′(t) = tx(t) + 7t, x(3) = 6.

(The integration techniques, such as integration by parts or by substi-
tutions should be used to complete the answers.)

3. Consider

x′(t) = k(t)x(t) + f(t), x(t0) = x0,

for some continuous functions k(t) and f(t).

(a) Solve the equation when f = 0.

(b) Review the derivation of the variation of parameters formula by

assuming that C(t)e
∫ t

t0
k(s)ds

is a solution and then find the for-
mula for C(t).

(c) Let

y(t) = e

∫ t

t0
k(s)ds

[
x0 +

∫ t

t0
e
−
∫ s

t0
k(h)dh

f(s)ds
]
.

Find y′(t) in terms of y(t) and f(t).
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4. Show that

(a) T (t) = ekt satisfies the “semigroup property” (S1) and (S2).

(b) U(t, s) = e
∫ t

s
k(h)dh satisfies the “evolution system property” (E1)

and (E2).

5. Draw the direction field for

(a) x′ = tx.

(b) x′ = −x2.

(c) x′
1 = x2

1, x′
2 = x2

2.

(d) x′
1 = tx1x2, x′

2 = −x2
2.

6. Sketch the function f(x) = x2 +x− 2. Then sketch, on the x-axis, the
flows of the solutions of x′ = f(x). Finally sketch the solutions in the
(t, x)-plane.

7. Consider the logistic equation in Example 1.2.1.

(a) Determine the concavity of the solution x(t) when x(t) > C by
using Figure 1.12.

(b) Check that x1(t) = 0, x2(t) = C, t ≥ 0, are both constant
solutions. Then solve for other solutions.

(c) For the solution given by (2.11), determine the concavity by using
the second derivative.

8. Verify that the logistic equation (2.1) can be replaced by

x′(t) = rx(t)[1 − x(t)], (3.17)

where r = aC.

9. Solve the equation in Example 1.3.10.

10. Show that x(t) = cos t, y(t) = sin t satisfies {x′(t) = −y(t), y′(t) =
x(t)}.

11. Consider

x′(t) = 2x(t), x(0) = 1, (3.18)
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and define

x0(t) = 1,

x1(t) = 1 +
∫ t

0
2x0(s)ds,

xm(t) = 1 +
∫ t

0
2xm−1(s)ds, m = 2, 3, · · · .

(a) Use an induction to find a formula for xm(t).
(b) For t ∈ � fixed, find limm→∞ xm(t).
(c) Define x(t) = limm→∞ xm(t). Check if x(t) is a solution of Eq.

(3.18).

12. Examine the change of the number of critical points for

(a) x′ = µ + x2,
(b) x′ = µ − x − e−x,

where µ is regarded as a parameter.

13. Start with any real number x0 ∈ (0, 1) and use a calculator or Maple
to find x1, x2, · · · , xm up to m = 30 for

(a) xm+1 = sinxm,
(b) xm+1 = cosxm,
(c) xm+1 = 0.5 sinπxm,
(d) xm+1 = 0.76 sinπxm,
(e) xm+1 = 0.92 sinπxm,
(f) xm+1 = 0.94 sinπxm,
(g) xm+1 = 0.98 sinπxm.

14. Find a V function for the equation

x′(t) = −t4x(t),

such that its derivative in t satisfies V ′ ≤ 0.

15. Find all the periodic solutions of the scalar differential equation

x′ = x[x − 1][x + 1].

Argue why they are all the periodic solutions for the equation.


