Crazy Bases: Fractions and Twoandthree

Stephen Lucas

Department of Mathematics and Statistics James Madison University, Harrisonburg VA

March 2019

Outline

- Integer Bases: Natural number, transforming, negative.
- Fractional Bases: Traditional, new, arithmetic.
- Base 2\&3: Digits representing the same number in bases 2 and 3 simultaneously.
- p-adic Interlude: negative integers and fractions
- More Craziness: other simultaneous bases, irrational bases, complex bases...

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Most significant first: Find successive powers of b until $b^{n+1} \geq x$.

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Most significant first: Find successive powers of b until $b^{n+1} \geq x$. Let $x_{n}=x$, then for $k=n, n-1, \ldots, 0, d_{k}=\left\lfloor x_{k} / b\right\rfloor$ and $x_{k}=d_{k} b^{k}+x_{k-1}$.

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Most significant first: Find successive powers of b until $b^{n+1} \geq x$. Let $x_{n}=x$, then for $k=n, n-1, \ldots, 0, d_{k}=\left\lfloor x_{k} / b\right\rfloor$ and $x_{k}=d_{k} b^{k}+x_{k-1}$.

222 to base 4: $4^{0}=1,4^{1}=4,4^{2}=16,4^{3}=64,4^{4}=256$,

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Most significant first: Find successive powers of b until $b^{n+1} \geq x$. Let $x_{n}=x$, then for $k=n, n-1, \ldots, 0, d_{k}=\left\lfloor x_{k} / b\right\rfloor$ and $x_{k}=d_{k} b^{k}+x_{k-1}$.

222 to base 4: $4^{0}=1,4^{1}=4,4^{2}=16,4^{3}=64,4^{4}=256$, so $222=3 \times 4^{3}+30,30=1 \times 4^{2}+14,14=3 \times 4^{1}+2$, $1=2 \times 4^{0}+0$,

Natural Number Base

Given a natural number base $b>1$, a natural number has a unique representation $x=d_{0}+d_{1} b+d_{2} b^{2}+\cdots+d_{n} b^{n}$, each $d_{i} \in\{0,1, \ldots, b-1\}$, as $\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{b}$.

Most significant first: Find successive powers of b until $b^{n+1} \geq x$. Let $x_{n}=x$, then for $k=n, n-1, \ldots, 0, d_{k}=\left\lfloor x_{k} / b\right\rfloor$ and $x_{k}=d_{k} b^{k}+x_{k-1}$.

222 to base 4: $4^{0}=1,4^{1}=4,4^{2}=16,4^{3}=64,4^{4}=256$, so
$222=3 \times 4^{3}+30,30=1 \times 4^{2}+14,14=3 \times 4^{1}+2$, $1=2 \times 4^{0}+0$, and $222=(3132)_{4}$.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$.
Repeat $y_{k}=\left\lfloor y_{k-1} / b\right\rfloor, d_{k}=y_{k-1}-b y_{k}$ until $y_{n}=0$.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$. Repeat $y_{k}=\left\lfloor y_{k-1} / b\right\rfloor, d_{k}=y_{k-1}-b y_{k}$ until $y_{n}=0$.

222 to base 4: $222=55 \times 4+2,55=13 \times 4+3,13=3 \times 4+1$, $3=0 \times 4+3,222=(3132)_{4}$.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$.
Repeat $y_{k}=\left\lfloor y_{k-1} / b\right\rfloor, d_{k}=y_{k-1}-b y_{k}$ until $y_{n}=0$.
222 to base 4: $222=55 \times 4+2,55=13 \times 4+3,13=3 \times 4+1$, $3=0 \times 4+3,222=(3132)_{4}$.

Using Carries: Since $b \times b^{k}=1 \times b^{k+1}$, subtracting b from a digit is balanced by adding one to the digit to the left.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$.
Repeat $y_{k}=\left\lfloor y_{k-1} / b\right\rfloor, d_{k}=y_{k-1}-b y_{k}$ until $y_{n}=0$.
222 to base 4: $222=55 \times 4+2,55=13 \times 4+3,13=3 \times 4+1$, $3=0 \times 4+3,222=(3132)_{4}$.

Using Carries: Since $b \times b^{k}=1 \times b^{k+1}$, subtracting b from a digit is balanced by adding one to the digit to the left. Apply $[+1,-b]$ starting with number in the units digit.

Least Significant First

$$
\frac{x}{b}=\left\lfloor\frac{x}{b}\right\rfloor+\frac{x-b\lfloor x / b\rfloor}{b}=\frac{d_{0}}{b}+d_{1}+d_{2} b+\cdots+d_{n} b^{n-1} .
$$

Equate integer and fractional parts, let $y_{1}=\lfloor x / b\rfloor, d_{0}=x-b y_{1}$.
Repeat $y_{k}=\left\lfloor y_{k-1} / b\right\rfloor, d_{k}=y_{k-1}-b y_{k}$ until $y_{n}=0$.
222 to base 4: $222=55 \times 4+2,55=13 \times 4+3,13=3 \times 4+1$, $3=0 \times 4+3,222=(3132)_{4}$.

Using Carries: Since $b \times b^{k}=1 \times b^{k+1}$, subtracting b from a digit is balanced by adding one to the digit to the left. Apply $[+1,-b]$ starting with number in the units digit.
222 to base 4: $(222) \xrightarrow{55}(55,2) \xrightarrow{13}(13,3,2) \xrightarrow{3}(3,1,3,2)$.

Other Digit Sets

- The digit set $\{1,2, \ldots, b\}$ always works, shifting higher may not.

Other Digit Sets

- The digit set $\{1,2, \ldots, b\}$ always works, shifting higher may not.
- Balanced notation uses digits from $-(b-1) / 2$ to $(b-1) / 2(b$ odd) or $-b / 2+1$ to $b / 2$ (b even).

Other Digit Sets

- The digit set $\{1,2, \ldots, b\}$ always works, shifting higher may not.
- Balanced notation uses digits from $-(b-1) / 2$ to $(b-1) / 2(b$ odd) or $-b / 2+1$ to $b / 2$ (b even). Less symbols, dramatically fewer carries, no notational difference between positive and negative, so subtraction is as easy as addition.

Other Digit Sets

- The digit set $\{1,2, \ldots, b\}$ always works, shifting higher may not.
- Balanced notation uses digits from $-(b-1) / 2$ to $(b-1) / 2(b$ odd) or $-b / 2+1$ to $b / 2$ (b even). Less symbols, dramatically fewer carries, no notational difference between positive and negative, so subtraction is as easy as addition. Division is more challenging, best by Egyptian doubling/subtraction.

Other Digit Sets

- The digit set $\{1,2, \ldots, b\}$ always works, shifting higher may not.
- Balanced notation uses digits from $-(b-1) / 2$ to $(b-1) / 2(b$ odd) or $-b / 2+1$ to $b / 2$ (b even). Less symbols, dramatically fewer carries, no notational difference between positive and negative, so subtraction is as easy as addition. Division is more challenging, best by Egyptian doubling/subtraction.
- Odlyzko (1978): base ten with $\{0,1,2,3,4,50,51,52,53,54\}$, Matula (1982): base three with $\{0,1,-7\}$, and complete theory (including 0).

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Eg In base minus ten with carry rule [1, 10]:
$(222) \xrightarrow{-22}(-22,2) \xrightarrow{3}(3,8,2)$, so $222=(382)_{-10}$.

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Eg In base minus ten with carry rule [1, 10]:
$(222) \xrightarrow{-22}(-22,2) \xrightarrow{3}(3,8,2)$, so $222=(382)_{-10}$.
$(-222) \xrightarrow{23}(23,8) \xrightarrow{-2}(-2,3,8) \xrightarrow{1}(1,8,3,8),-222=(1838)_{-10}$.

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Eg In base minus ten with carry rule [1, 10]:
$(222) \xrightarrow{-22}(-22,2) \xrightarrow{3}(3,8,2)$, so $222=(382)_{-10}$.
$(-222) \xrightarrow{23}(23,8) \xrightarrow{-2}(-2,3,8) \xrightarrow{1}(1,8,3,8),-222=(1838)_{-10}$.
Check: $3 \times 100-8 \times 10+2=222$,
$-1 \times 1000+8 \times 100-3 \times 10+8=-222$.

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Eg In base minus ten with carry rule [1, 10]:
$(222) \xrightarrow{-22}(-22,2) \xrightarrow{3}(3,8,2)$, so $222=(382)_{-10}$.
$(-222) \xrightarrow{23}(23,8) \xrightarrow{-2}(-2,3,8) \xrightarrow{1}(1,8,3,8),-222=(1838)_{-10}$.
Check: $3 \times 100-8 \times 10+2=222$,
$-1 \times 1000+8 \times 100-3 \times 10+8=-222$.

Arithmetic in a negative base is surprisingly subtle, and addition can lead to an infinite number of carries.

Negative Integer Base

The carries approach in base $-b$ has carry rule $[+1,+b]$, and means positive and negative integers can be represented without a negative sign.

Eg In base minus ten with carry rule [1, 10]:
$(222) \xrightarrow{-22}(-22,2) \xrightarrow{3}(3,8,2)$, so $222=(382)_{-10}$.
$(-222) \xrightarrow{23}(23,8) \xrightarrow{-2}(-2,3,8) \xrightarrow{1}(1,8,3,8),-222=(1838)_{-10}$.
Check: $3 \times 100-8 \times 10+2=222$,
$-1 \times 1000+8 \times 100-3 \times 10+8=-222$.
Arithmetic in a negative base is surprisingly subtle, and addition can lead to an infinite number of carries. I've shown reallocation can be used to get a finite result. Subtraction looks like positive base addition with carries!

Traditional Approach

In 1936, Kempner pointed out any real could be the base using nonnegative integers less than b as digits.

Traditional Approach

In 1936, Kempner pointed out any real could be the base using nonnegative integers less than b as digits. Unfortunately, this requires digits after the radix point, and usually isn't periodic.

Traditional Approach

In 1936, Kempner pointed out any real could be the base using nonnegative integers less than b as digits. Unfortunately, this requires digits after the radix point, and usually isn't periodic.

Eg in base $\frac{3}{2}, 10=\left(\frac{3}{2}\right)^{5}+\left(\frac{3}{2}\right)^{1}+\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-4}+\left(\frac{3}{2}\right)^{-8}$
$+\left(\frac{3}{2}\right)^{-15}+\frac{344,543}{459,165,024}$,

Traditional Approach

In 1936, Kempner pointed out any real could be the base using nonnegative integers less than b as digits. Unfortunately, this requires digits after the radix point, and usually isn't periodic.

Eg in base $\frac{3}{2}, 10=\left(\frac{3}{2}\right)^{5}+\left(\frac{3}{2}\right)^{1}+\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-4}+\left(\frac{3}{2}\right)^{-8}$
$+\left(\frac{3}{2}\right)^{-15}+\frac{344,543}{459,165,024}, 10=(100010.100100010000001 \ldots)_{3 / 2}$.
And $12=(100.2302101 \ldots)_{10 / 3}$.

Traditional Approach

In 1936, Kempner pointed out any real could be the base using nonnegative integers less than b as digits. Unfortunately, this requires digits after the radix point, and usually isn't periodic.

Eg in base $\frac{3}{2}, 10=\left(\frac{3}{2}\right)^{5}+\left(\frac{3}{2}\right)^{1}+\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-4}+\left(\frac{3}{2}\right)^{-8}$
$+\left(\frac{3}{2}\right)^{-15}+\frac{344,543}{459,165,024}, 10=(100010.100100010000001 \ldots)_{3 / 2}$.
And $12=(100.2302101 \ldots)_{10 / 3}$.
We also lack uniqueness:
$2=(10.01000001 \ldots)_{3 / 2}=(0.111 \ldots)_{3 / 2}$.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.
Uniqueness: only one choice for each digit. Existence: carry to the left reduces the magnitude.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.
Uniqueness: only one choice for each digit. Existence: carry to the left reduces the magnitude.

If $0<p / q<1$, digits $\{0,1, \ldots, q-1\}$, carry to the right.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.
Uniqueness: only one choice for each digit. Existence: carry to the left reduces the magnitude.

If $0<p / q<1$, digits $\{0,1, \ldots, q-1\}$, carry to the right.
Negative base $-p / q$ has carry rule $[+q,+p]$.

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.
Uniqueness: only one choice for each digit. Existence: carry to the left reduces the magnitude.

If $0<p / q<1$, digits $\{0,1, \ldots, q-1\}$, carry to the right.
Negative base $-p / q$ has carry rule $[+q,+p]$. If p / q not in lowest form, lose uniqueness: $10=(21010)_{3 / 2}=(21010)_{6 / 4}$

Propp's Base p / q

Around 1995, James Propp (inspired by a relative of the chip firing game) discovered a finite representation of natural numbers in fractional base $p / q>1$, using digits $\{0,1, \ldots, p-1\}$.

Since $p\left(\frac{p}{q}\right)^{k}=\frac{p^{k+1}}{q^{k}}=q\left(\frac{p}{q}\right)^{k+1}$, the carry rule is $[+q,-p]$.
Uniqueness: only one choice for each digit. Existence: carry to the left reduces the magnitude.

If $0<p / q<1$, digits $\{0,1, \ldots, q-1\}$, carry to the right.
Negative base $-p / q$ has carry rule $[+q,+p]$. If p / q not in lowest form, lose uniqueness: $10=(21010)_{3 / 2}=(21010)_{6 / 4}$ $=(44)_{6 / 4}$.

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]$:

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.

Eg base $10 / 3$ with $[+3,-10]$:

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0)$,

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0),(12) \xrightarrow{1}(3,2)$,

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0),(12) \xrightarrow{1}(3,2)$, $(222) \xrightarrow{22}(66,2) \xrightarrow{6}(18,6,2) \xrightarrow{1}(3,8,6,2)$.

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0),(12) \xrightarrow{1}(3,2)$, $(222) \xrightarrow{22}(66,2) \xrightarrow{6}(18,6,2) \xrightarrow{1}(3,8,6,2)$.

Backwards in base 10/3: $(9,9,8,2) \xrightarrow{-3}(39,8,2) \xrightarrow{-13}(138,2)$ $\xrightarrow{-46}(462)$,

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0),(12) \xrightarrow{1}(3,2)$, $(222) \xrightarrow{22}(66,2) \xrightarrow{6}(18,6,2) \xrightarrow{1}(3,8,6,2)$.

Backwards in base 10/3: $(9,9,8,2) \xrightarrow{-3}(39,8,2) \xrightarrow{-13}(138,2)$
$\xrightarrow{-46}(462)$, but $(9,8,8,2) \xrightarrow{-3}(0,38,8,2) \xrightarrow{-12}(0,2,128,2)$ $\xrightarrow{-42}(0,2,2,422)$.

Conversion

To convert to Propp base p / q, start with number in the units digit, and apply the carry rule as many times as necessary.

Eg base $3 / 2$ with $[+2,-3]:(10) \xrightarrow{3}(6,1) \xrightarrow{2}(4,0,1) \xrightarrow{1}(2,1,0,1)$.
Check: $2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}+1=\frac{27}{4}+\frac{9}{4}+1=\frac{40}{4}=10$.
Eg base $10 / 3$ with $[+3,-10]:(10) \xrightarrow{1}(3,0),(12) \xrightarrow{1}(3,2)$, $(222) \xrightarrow{22}(66,2) \xrightarrow{6}(18,6,2) \xrightarrow{1}(3,8,6,2)$.

Backwards in base 10/3: $(9,9,8,2) \xrightarrow{-3}(39,8,2) \xrightarrow{-13}(138,2)$ $\xrightarrow{-46}(462)$, but $(9,8,8,2) \xrightarrow{-3}(0,38,8,2) \xrightarrow{-12}(0,2,128,2)$ $\xrightarrow{-42}(0,2,2,422) .2 \times \frac{100}{9}+2 \times \frac{10}{3}+422=450 \frac{8}{9}$.

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits:

$$
(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}
$$

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits:

$$
(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}
$$

- Multiplication is also straightforward, easier with lattice separating digit products from carries.

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits:

$$
(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}
$$

- Multiplication is also straightforward, easier with lattice separating digit products from carries.
- Subtraction is easy by reallocation: search left for a two that can be reallocated.

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits: $(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}$.
- Multiplication is also straightforward, easier with lattice separating digit products from carries.
- Subtraction is easy by reallocation: search left for a two that can be reallocated.
- Division is hard, because shifting digits doesn't give a natural number quotient.

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits: $(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}$.
- Multiplication is also straightforward, easier with lattice separating digit products from carries.
- Subtraction is easy by reallocation: search left for a two that can be reallocated.
- Division is hard, because shifting digits doesn't give a natural number quotient. Best is Egyptian approach: successive doubling divisor until too big, then subtracting.

UNIVERSITY。

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits:

$$
(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}
$$

- Multiplication is also straightforward, easier with lattice separating digit products from carries.
- Subtraction is easy by reallocation: search left for a two that can be reallocated.
- Division is hard, because shifting digits doesn't give a natural number quotient. Best is Egyptian approach: successive doubling divisor until too big, then subtracting.
- To identify if digits represent a natural number, divide by one and see if there is a remainder!

Arithmetic in Base 3/2

- Addition is as for traditional positional notation, right to left, but in base $3 / 2$ sometimes carries two digits: $(2)_{3 / 2}+(1)_{3 / 2}=(20)_{3 / 2},(2)_{3 / 2}+(2)_{3 / 2}+(2)_{3 / 2}=(210)_{3 / 2}$.
- Multiplication is also straightforward, easier with lattice separating digit products from carries.
- Subtraction is easy by reallocation: search left for a two that can be reallocated.
- Division is hard, because shifting digits doesn't give a natural number quotient. Best is Egyptian approach: successive doubling divisor until too big, then subtracting.
- To identify if digits represent a natural number, divide by one and see if there is a remainder!
- Fractions appear to have an infinite number of representations.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$. Shifted, $[+1,-2,0]+3[0,-1,+2]=[+1,-5,+6]$.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$. Shifted, $[+1,-2,0]+3[0,-1,+2]=[+1,-5,+6]$.

The base three carry rule is $[+1,-3]$.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$. Shifted, $[+1,-2,0]+3[0,-1,+2]=[+1,-5,+6]$.

The base three carry rule is $[+1,-3]$.
$[+1,-3,0]+2[0,-1,+3]=[+1,-5,+6]$.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$. Shifted, $[+1,-2,0]+3[0,-1,+2]=[+1,-5,+6]$.

The base three carry rule is $[+1,-3]$.
$[+1,-3,0]+2[0,-1,+3]=[+1,-5,+6]$. The same three digit carry rule applied to digits doesn't change the number they represent in bases two or three.

Base 2\&3 Motivation

The base two carry rule is $[+1,-2]$, or $[+1,-2,0]$. Shifted, $[+1,-2,0]+3[0,-1,+2]=[+1,-5,+6]$.

The base three carry rule is $[+1,-3]$.
$[+1,-3,0]+2[0,-1,+3]=[+1,-5,+6]$. The same three digit carry rule applied to digits doesn't change the number they represent in bases two or three. Call this base 2\&3?

Note as polynomial coefficients, $b-2=0 \rightarrow b=2$, $b-3=0 \rightarrow b=3, b^{2}-5 b+6=(b-2)(b-3)=0 \rightarrow b=2,3$.

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$,

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$,
$5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$.

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$.

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$. Check:
$11.222 \ldots 2=2+1+2=5$,

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$. Check:
$11.222 \ldots 2=2+1+2=5,11.222 \ldots 3=3+1+1=5$.

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$. Check:
$11.222 \ldots 2=2+1+2=5,11.222 \ldots 3=3+1+1=5$.
$6=12.222 \ldots 2 \& 3,7=13.222 \ldots 2 \& 3,8=14.222 \ldots 2 \& 3$,

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$. Check:
$11.222 \ldots 2=2+1+2=5,11.222 \ldots 3=3+1+1=5$.
$6=12.222 \ldots 2 \& 3,7=13.222 \ldots 2 \& 3,8=14.222 \ldots 2 \& 3$,
$9=15.222 \ldots 2 \& 3=20.8222 \ldots 2 \& 3=21.38222 \ldots 2 \& 3=$ $21.438222 \ldots 2 \& 3=21.4438222 \ldots 2 \& 3=21.44438222 \ldots 2 \& 3=$..

Counting Up

The carry rule $[+1,-5,+6]$ using the digits $\{0,1,2,3,4\}$ could line up the -5 with the digit to reduce.
$1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}$, and $4=4_{2 \& 3}$, $5=5_{2 \& 3}=10.6_{2 \& 3}=11.16_{2 \& 3}=11.216_{2 \& 3}=11.2216_{2 \& 3}=$ $11.22216_{2 \& 3}=\cdots$. So $5=11.222 \ldots 2 \& 3$. Check:
$11.222 \ldots 2=2+1+2=5,11.222 \ldots 3=3+1+1=5$.
$6=12.222 \ldots 2 \& 3,7=13.222 \ldots 2 \& 3,8=14.222 \ldots 2 \& 3$,
$9=15.222 \ldots 2 \& 3=20.8222 \ldots 2 \& 3=21.38222 \ldots 2 \& 3=$ $21.438222 \ldots 2 \& 3=21.4438222 \ldots 2 \& 3=21.44438222 \ldots 2 \& 3=$ \cdots. So $9=21.444 \ldots 2 \& 3$.

Continuing

$$
10=22.444 \ldots 2 \& 3,11=23.444 \ldots 2 \& 3,12=24.444 \ldots 2 \& 3,
$$

Continuing

$10=22.444 \ldots 2 \& 3,11=23.444 \ldots 2 \& 3,12=24.444 \ldots 2 \& 3$,
$13=25.444 \ldots 2 \& 3=30 .(10) 444 \ldots 2 \& 3=32.0(16) 444 \ldots 2 \& 3=$ $33.31(22) 444 \ldots 2 \& 3=32.352(28) 444 \ldots 2 \& 3=$
$32.408(28) 444 \ldots 2 \& 3=32.413(34) 444 \ldots 2 \& 3=$
$32.4194(40) 444 \ldots 2 \& 3=32.424(10)(40) 444 \ldots 2 \& 3=$ $32.4260(52) 444 \ldots 2 \& 3=\cdots$.

Continuing

$$
\begin{aligned}
& 10=22.444 \ldots 2 \& 3,11=23.444 \ldots 2 \& 3,12=24.444 \ldots 2 \& 3, \\
& 13=25.444 \ldots 2 \& 3=30 .(10) 444 \ldots 2 \& 3=32.0(16) 444 \ldots 2 \& 3= \\
& 33.31(22) 444 \ldots 2 \& 3=32.352(28) 444 \ldots 2 \& 3= \\
& 32.408(28) 444 \ldots 2 \& 3=32.413(34) 444 \ldots 2 \& 3= \\
& 32.4194(40) 444 \ldots 2 \& 3=32.424(10)(40) 444 \ldots 2 \& 3= \\
& 32.4260(52) 444 \ldots 2 \& 3=\cdots .
\end{aligned}
$$

After a million applications of the carry rule, $13=32.444444444444322223442441414(39)(44)(18217)$ (8978498)(26 352477$)(3348444877)(10311561742) 444 \ldots 2 \& 3$.

Continuing

$10=22.444 \ldots 2 \& 3,11=23.444 \ldots 2 \& 3,12=24.444 \ldots 2 \& 3$,
$13=25.444 \ldots 2 \& 3=30 .(10) 444 \ldots 2 \& 3=32.0(16) 444 \ldots 2 \& 3=$
$33.31(22) 444 \ldots 2 \& 3=32.352(28) 444 \ldots 2 \& 3=$
$32.408(28) 444 \ldots 2 \& 3=32.413(34) 444 \ldots 2 \& 3=$
$32.4194(40) 444 \ldots 2 \& 3=32.424(10)(40) 444 \ldots 2 \& 3=$
$32.4260(52) 444 \ldots 2 \& 3=\cdots$.
After a million applications of the carry rule, $13=32.444444444444322223442441414(39)(44)(18217)$ (8978498)(26 352477$)(3348444$ 877)(10 311561742)444 . . 2\&3. Unfortunately $32.444 \ldots 3=13$, but $32.444 \ldots 2=12$, so 13 (and higher) don't appear to work :-(

Digits $\{-1,0,1,2,3,4\}$

Apply the carry rule $[-1+5,-6]$ to the left, lining up the -6 to reduce the rightmost digit that is too large.

Digits $\{-1,0,1,2,3,4\}$

Apply the carry rule $[-1+5,-6]$ to the left, lining up the -6 to reduce the rightmost digit that is too large. Zero through five leads to infinitely many carries to the left, but a finite number of digits can be obtained starting at $-1 \equiv \underline{1}$.

Digits $\{-1,0,1,2,3,4\}$

Apply the carry rule $[-1+5,-6]$ to the left, lining up the -6 to reduce the rightmost digit that is too large. Zero through five leads to infinitely many carries to the left, but a finite number of digits can be obtained starting at $-1 \equiv \underline{1}$. Counting up,

$$
\begin{gathered}
1=1_{2 \& 3}, 2=2_{2 \& 3}, 3=3_{2 \& 3}, 4=42 \& 3, \\
5=5_{2 \& 3}=\underline{1}_{2 \& 3}=\underline{1} 4 \underline{11}_{2 \& 3}, 6=\underline{1} 4 \underline{1} 0_{2 \& 3}, 7=\underline{1} 41_{2 \& 3}, \\
8=\underline{1} 4 \underline{1}_{2 \& 3}, 9=\underline{1} 4 \underline{1} 3_{2 \& 3}, 10=\underline{1} 4 \underline{1} 4_{2 \& 3}, \\
11=\underline{1}_{21} \underline{1}_{2 \& 3}=\underline{1}_{241_{2 \& 3}}, 12=\underline{1} 340_{2 \& 3},
\end{gathered}
$$

and so on. Or using the carry rule directly,
$(12)_{2 \& 3} \xrightarrow{-2}(-2)(10) 0_{2 \& 3} \xrightarrow{-1} 1^{340_{2 \& 3}}$, and
$(43)_{2 \& 3} \xrightarrow{-7}(-7)(35) 1_{2 \& 3} \xrightarrow{-6}(-6)(23) 1_{2 \& 3}$
$\xrightarrow{-4}(-4)(14) \underline{11} 1_{2 \& 3} \xrightarrow{-2}(-2) 62 \underline{11} 1_{2 \& 3} \xrightarrow{-1} \underline{1} 302 \underline{11} 1_{2 \& 3}$.

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 .

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 . Let $x^{\prime}=(x-d) / 2$, $y^{\prime}=(y-d) / 3$, and repeat with $x=x^{\prime}, y=y^{\prime}$.

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 . Let $x^{\prime}=(x-d) / 2$, $y^{\prime}=(y-d) / 3$, and repeat with $x=x^{\prime}, y=y^{\prime}$.

Existence: If $y \geq 1, y^{\prime}=(y-d) / 3 \geq(y-4) / 3 \geq(1-4) / 3=-1$. If $y=0, y^{\prime}=0,-1$. If $y=-1, y^{\prime}=0,-1$.

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 . Let $x^{\prime}=(x-d) / 2$, $y^{\prime}=(y-d) / 3$, and repeat with $x=x^{\prime}, y=y^{\prime}$.

Existence: If $y \geq 1, y^{\prime}=(y-d) / 3 \geq(y-4) / 3 \geq(1-4) / 3=-1$. If $y=0, y^{\prime}=0,-1$. If $y=-1, y^{\prime}=0,-1$. If $x \geq y, x^{\prime} \geq 3 y^{\prime} / 2$. $y^{\prime} \geq 0,-1$ cases lead to $x^{\prime} \geq y^{\prime}$.

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 . Let $x^{\prime}=(x-d) / 2$, $y^{\prime}=(y-d) / 3$, and repeat with $x=x^{\prime}, y=y^{\prime}$.

Existence: If $y \geq 1, y^{\prime}=(y-d) / 3 \geq(y-4) / 3 \geq(1-4) / 3=-1$. If $y=0, y^{\prime}=0,-1$. If $y=-1, y^{\prime}=0,-1$. If $x \geq y, x^{\prime} \geq 3 y^{\prime} / 2$. $y^{\prime} \geq 0,-1$ cases lead to $x^{\prime} \geq y^{\prime}$. So if $x \geq y \geq-1, x^{\prime} \geq y^{\prime} \geq-1$.

Outline of Proof

Theorem: For integers $x \geq y \geq-1$ there is a unique finite sequence of digits from -1 to 4 representing x in base 2 and y in base 3 .

Uniqueness: rightmost digit must be congruent to $x \bmod 2$ and $y \bmod 3$, unique choice from -1 to 4 . Let $x^{\prime}=(x-d) / 2$, $y^{\prime}=(y-d) / 3$, and repeat with $x=x^{\prime}, y=y^{\prime}$.

Existence: If $y \geq 1, y^{\prime}=(y-d) / 3 \geq(y-4) / 3 \geq(1-4) / 3=-1$. If $y=0, y^{\prime}=0,-1$. If $y=-1, y^{\prime}=0,-1$. If $x \geq y, x^{\prime} \geq 3 y^{\prime} / 2$. $y^{\prime} \geq 0,-1$ cases lead to $x^{\prime} \geq y^{\prime}$. So if $x \geq y \geq-1, x^{\prime} \geq y^{\prime} \geq-1$.
$x^{\prime}+y^{\prime}<x+y$ when $3 x+4 y>5$. Checking the seven cases where this is not true all converge to $x=y=0$.

Alternate Construction

Our proof gives a different way of finding digits: start with $x_{0}=y_{0}=x$. Given pair $\left(x_{i}, y_{i}\right)$, find digit $d_{i} \in\{-1,0,1,2,3,4\}$ congruent to $x_{i} \bmod 2$ and $y_{i} \bmod 3$, set $x_{i+1}=\left(x_{i}-d_{i}\right) / 2$, $y_{i+1}=\left(y_{i}-d_{i}\right) / 3$, until $x_{k}=y_{k}=0$.

Alternate Construction

Our proof gives a different way of finding digits: start with $x_{0}=y_{0}=x$. Given pair $\left(x_{i}, y_{i}\right)$, find digit $d_{i} \in\{-1,0,1,2,3,4\}$ congruent to $x_{i} \bmod 2$ and $y_{i} \bmod 3$, set $x_{i+1}=\left(x_{i}-d_{i}\right) / 2$, $y_{i+1}=\left(y_{i}-d_{i}\right) / 3$, until $x_{k}=y_{k}=0$.
With $x_{0}=y_{0}=43$:

Alternate Construction

Our proof gives a different way of finding digits: start with $x_{0}=y_{0}=x$. Given pair $\left(x_{i}, y_{i}\right)$, find digit $d_{i} \in\{-1,0,1,2,3,4\}$ congruent to $x_{i} \bmod 2$ and $y_{i} \bmod 3$, set $x_{i+1}=\left(x_{i}-d_{i}\right) / 2$, $y_{i+1}=\left(y_{i}-d_{i}\right) / 3$, until $x_{k}=y_{k}=0$.
With $x_{0}=y_{0}=43$:

- $43 \bmod 2=1,43 \bmod 3=1: d_{0}=1$ and $x_{1}=21, y_{1}=14$.

Alternate Construction

Our proof gives a different way of finding digits: start with $x_{0}=y_{0}=x$. Given pair $\left(x_{i}, y_{i}\right)$, find digit $d_{i} \in\{-1,0,1,2,3,4\}$ congruent to $x_{i} \bmod 2$ and $y_{i} \bmod 3$, set $x_{i+1}=\left(x_{i}-d_{i}\right) / 2$, $y_{i+1}=\left(y_{i}-d_{i}\right) / 3$, until $x_{k}=y_{k}=0$.
With $x_{0}=y_{0}=43$:

- $43 \bmod 2=1,43 \bmod 3=1: d_{0}=1$ and $x_{1}=21, y_{1}=14$.
- $21 \bmod 2=1,14 \bmod 3=2: d_{1}=-1$ and $x_{2}=11, y_{2}=5$.

Alternate Construction

Our proof gives a different way of finding digits: start with $x_{0}=y_{0}=x$. Given pair $\left(x_{i}, y_{i}\right)$, find digit $d_{i} \in\{-1,0,1,2,3,4\}$ congruent to $x_{i} \bmod 2$ and $y_{i} \bmod 3$, set $x_{i+1}=\left(x_{i}-d_{i}\right) / 2$, $y_{i+1}=\left(y_{i}-d_{i}\right) / 3$, until $x_{k}=y_{k}=0$.
With $x_{0}=y_{0}=43$:

- $43 \bmod 2=1,43 \bmod 3=1: d_{0}=1$ and $x_{1}=21, y_{1}=14$.
- $21 \bmod 2=1,14 \bmod 3=2: d_{1}=-1$ and $x_{2}=11, y_{2}=5$.
- $11 \bmod 2=1,5 \bmod 3=2: d_{2}=-1$ and $x_{3}=6, y_{3}=2$.
- $6 \bmod 2=0,2 \bmod 3=2: d_{3}=2$ and $x_{4}=2, y_{4}=0$.
- $2 \bmod 2=0,0 \bmod 3=0: d_{4}=0$ and $x_{5}=1, y_{5}=0$.
- $1 \bmod 2=1,0 \bmod 3=0: d_{5}=3$ and $x_{6}=-1, y_{6}=-1$.
$\cdot-1 \bmod 2=1,-1 \bmod 3=2: d_{6}=-1$ and $x_{7}=0, y_{7}=0$. Reading off the digits, $43=1302111_{2 \& 3}$ again.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5}$?

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$. Since $-x=(-1-x)+1$, subtract the digits of x from $\ldots 444_{5}$, add one.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$. Since $-x=(-1-x)+1$, subtract the digits of x from ...4445, add one. Exactly how computers handle negatives in base 2, and how mechanical adding machines performed subtraction.

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$. Since $-x=(-1-x)+1$, subtract the digits of x from ...4445, add one. Exactly how computers handle negatives in base 2, and how mechanical adding machines performed subtraction.

What about $x=\ldots 131313_{5}$?

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$. Since $-x=(-1-x)+1$, subtract the digits of x from ...4445, add one. Exactly how computers handle negatives in base 2, and how mechanical adding machines performed subtraction.

What about $x=\ldots 131313_{5}$? Base five arithmetic:

$$
\left(x-13_{5}\right) / 5^{2}=x, x=(-13 / 44)_{5}=(-1 / 3)_{5}
$$

p-adic Interlude

p-adic numbers extend the rationals with a different definition of closeness, and allow an infinite number of digits to the left. In base $5,142=\ldots 0001032_{5}$.

What about $x=\ldots 444_{5} ?(x-4) / 5=x$, or $x=-1$. Check:
$\ldots 0001_{5}+\ldots 444_{5}=\ldots 000_{5}$. Since $-x=(-1-x)+1$, subtract the digits of x from ...4445, add one. Exactly how computers handle negatives in base 2, and how mechanical adding machines performed subtraction.

What about $x=\ldots 131313_{5}$? Base five arithmetic:
$\left(x-13_{5}\right) / 5^{2}=x, x=(-13 / 44)_{5}=(-1 / 3)_{5}$. Then
$\ldots 13131304_{5}=(-1 / 3)_{5} \cdot 5^{2}+4_{5}=(-100 / 3+30 / 3)_{5}$
$=(-20 / 3)_{5}$.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten:

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten: $1 / 6 \equiv 1 \bmod 5$, so starting with $x_{0}=1 / 6$,

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten: $1 / 6 \equiv 1 \bmod 5$, so starting with $x_{0}=1 / 6$,

- $1 / 6 \equiv 1 \times 1 \bmod 5, d_{0}=1, x_{1}=(1 / 6-1) / 5=-1 / 6$.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten: $1 / 6 \equiv 1 \bmod 5$, so starting with $x_{0}=1 / 6$,

- $1 / 6 \equiv 1 \times 1 \bmod 5, d_{0}=1, x_{1}=(1 / 6-1) / 5=-1 / 6$.
$\bullet-1 / 6 \equiv-1 \times 1 \bmod 5=-1 \equiv 4 \bmod 5, d_{1}=4, x_{2}=-5 / 6$.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten: $1 / 6 \equiv 1 \bmod 5$, so starting with $x_{0}=1 / 6$,

- $1 / 6 \equiv 1 \times 1 \bmod 5, d_{0}=1, x_{1}=(1 / 6-1) / 5=-1 / 6$.
$--1 / 6 \equiv-1 \times 1 \bmod 5=-1 \equiv 4 \bmod 5, d_{1}=4, x_{2}=-5 / 6$.
$--5 / 6 \equiv-5 \times 1 \bmod 5=-5 \equiv 0 \bmod 5, d_{2}=0, x_{3}=-1 / 6$.

From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p : if $b \cdot \beta \equiv 1 \bmod p$ then $1 / b \equiv \beta \bmod p$. Then $a / b=a \beta \equiv d_{0} \bmod p$, units digit. Shift $(a / b-d) / p$ and repeat.

Eg $1 / 6$ in 5 -adic, arithmetic in base ten: $1 / 6 \equiv 1 \bmod 5$, so starting with $x_{0}=1 / 6$,

- $1 / 6 \equiv 1 \times 1 \bmod 5, d_{0}=1, x_{1}=(1 / 6-1) / 5=-1 / 6$.
$--1 / 6 \equiv-1 \times 1 \bmod 5=-1 \equiv 4 \bmod 5, d_{1}=4, x_{2}=-5 / 6$.
$\cdot-5 / 6 \equiv-5 \times 1 \bmod 5=-5 \equiv 0 \bmod 5, d_{2}=0, x_{3}=-1 / 6$. $x_{3}=x_{1}$ repeating, $1 / 6=\ldots 0404041_{5}$.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible).

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.

Eg 7/60 in base ten.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.
$\operatorname{Eg} 7 / 60$ in base ten. $7 / 60=7 / 6 \times 10^{-1}=35 / 3 \times 10^{-2}$.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.
$\operatorname{Eg} 7 / 60$ in base ten. $7 / 60=7 / 6 \times 10^{-1}=35 / 3 \times 10^{-2}$. $1 / 3 \equiv 7 \bmod 10$.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.

Eg $7 / 60$ in base ten. $7 / 60=7 / 6 \times 10^{-1}=35 / 3 \times 10^{-2}$.
$1 / 3 \equiv 7 \bmod 10$. With $x_{0}=35 / 3$:
$\bullet 35 / 3 \equiv 35 \times 7 \bmod 10=245 \bmod 10 \equiv 5 \bmod 10, d_{1}=5$, $x_{2}=(35 / 3-5) / 10=2 / 3$.

- $2 / 3 \equiv 2 \times 7 \bmod 10=14 \bmod 10 \equiv 4 \bmod 10, d_{2}=4$,
$x_{3}=(2 / 3-4) / 10=-1 / 3$.
$\bullet-1 / 3 \equiv-1 \times 7 \bmod 10=-7 \bmod 10 \equiv 3 \bmod 10, d_{3}=3$, $x_{4}=(-1 / 3-3) / 10=-1 / 3=x_{3}$.
So $35 / 3=\ldots 33345$, and $7 / 60=\ldots 333.45$.

More p-adic Fractions

Non-prime base is fine (although $a b=0$ with $a, b \neq 0$ is possible). If denominator has common factors with the base, no multiplicative inverse. Shift digits to the right of the radix point until denominator has no common factors with the base.

Eg $7 / 60$ in base ten. $7 / 60=7 / 6 \times 10^{-1}=35 / 3 \times 10^{-2}$.
$1 / 3 \equiv 7 \bmod 10$. With $x_{0}=35 / 3$:
$\bullet 35 / 3 \equiv 35 \times 7 \bmod 10=245 \bmod 10 \equiv 5 \bmod 10, d_{1}=5$, $x_{2}=(35 / 3-5) / 10=2 / 3$.

- $2 / 3 \equiv 2 \times 7 \bmod 10=14 \bmod 10 \equiv 4 \bmod 10, d_{2}=4$,
$x_{3}=(2 / 3-4) / 10=-1 / 3$.
$\bullet-1 / 3 \equiv-1 \times 7 \bmod 10=-7 \bmod 10 \equiv 3 \bmod 10, d_{3}=3$, $x_{4}=(-1 / 3-3) / 10=-1 / 3=x_{3}$.
So $35 / 3=\ldots 33345$, and $7 / 60=\ldots 333.45$. Ordinary decimal multiplication: . . $333.45 \times 60=\ldots 0007$.

Six-adic Base 2\&3, Natural Numbers

Using the carry rule $[-1,+5,-6]$ to the left, we get 6 -adic form in base $2 \& 3$ using digits $\{0,1,2,3,4,5\}$.

Six-adic Base 2\&3, Natural Numbers

Using the carry rule $[-1,+5,-6]$ to the left, we get 6 -adic form in base $2 \& 3$ using digits $\{0,1,2,3,4,5\}$.
$6=6_{2 \& 3}=\underline{150}_{2 \& 3}=1 \underline{5}^{5} 50_{2 \& 3}=1 \underline{141550}_{2 \& 3}=1 \underline{14}_{21550}^{2 \& 3} 10$ $14221550_{2 \& 3}=142221550_{2 \& 3}=\cdots=\ldots 2221550_{2 \& 3}$.

Six-adic Base $2 \& 3$, Natural Numbers

Using the carry rule $[-1,+5,-6]$ to the left, we get 6 -adic form in base $2 \& 3$ using digits $\{0,1,2,3,4,5\}$.
$6=6_{2 \& 3}=150_{2 \& 3}=1 \underline{5} 50_{2 \& 3}=141550_{2 \& 3}=1421550_{2 \& 3}=$ $14221550_{2 \& 3}=142221550_{2 \& 3}=\cdots=\ldots 2221550_{2 \& 3}$.
$\ldots 2221550_{2}=\ldots 2221710_{2}=\ldots 2224110_{2}=\ldots 2240110_{2}=$
$\ldots 2400110_{2}=\ldots 24000110_{2}=\cdots=\ldots 000110_{2}=110_{2}=6$, and $\ldots 2221550_{3}=\ldots 2221620_{3}=\ldots 2223020_{3}=\ldots 2230020_{3}=$
$\ldots 2300020_{3}=\ldots 23000020_{3}=\cdots=\ldots 00020_{3}=20_{3}=6$.

Six-adic Base $2 \& 3$, Natural Numbers

Using the carry rule $[-1,+5,-6]$ to the left, we get 6 -adic form in base $2 \& 3$ using digits $\{0,1,2,3,4,5\}$.
$6=6_{2 \& 3}=150_{2 \& 3}=1 \underline{5} 50_{2 \& 3}=141550_{2 \& 3}=1421550_{2 \& 3}=$ $14221550_{2 \& 3}=142221550_{2 \& 3}=\cdots=\ldots 2221550_{2 \& 3}$.
$\ldots 2221550_{2}=\ldots 2221710_{2}=\ldots 2224110_{2}=\ldots 2240110_{2}=$
$\ldots 2400110_{2}=\ldots 24000110_{2}=\cdots=\ldots 000110_{2}=110_{2}=6$, and $\ldots 2221550_{3}=\ldots 2221620_{3}=\ldots 2223020_{3}=\ldots 2230020_{3}=$ $\ldots 2300020_{3}=\ldots 23000020_{3}=\cdots=\ldots 00020_{3}=20_{3}=6$.

Applying the carry rule till periodic, $(12)_{2 \& 3}=\ldots . . .22215340_{2 \& 3}$ and $(43)_{2 \& 3}=\ldots 2221524051_{2 \& 3}$.

Six-adic Base $2 \& 3$, Natural Numbers

Using the carry rule $[-1,+5,-6]$ to the left, we get 6 -adic form in base $2 \& 3$ using digits $\{0,1,2,3,4,5\}$.
$6=6_{2 \& 3}=150_{2 \& 3}=1 \underline{5} 50_{2 \& 3}=141550_{2 \& 3}=1 \underline{14}_{21550}^{2 \& 3} 10$ $14221550_{2 \& 3}=142221550_{2 \& 3}=\cdots=\ldots 2221550_{2 \& 3}$.
$\ldots 2221550_{2}=\ldots 2221710_{2}=\ldots 2224110_{2}=\ldots 2240110_{2}=$
$\ldots 2400110_{2}=\ldots 24000110_{2}=\cdots=\ldots 000110_{2}=110_{2}=6$, and $\ldots 2221550_{3}=\ldots 2221620_{3}=\ldots 2223020_{3}=\ldots 2230020_{3}=$ $\ldots 2300020_{3}=\ldots 23000020_{3}=\cdots=\ldots 00020_{3}=20_{3}=6$.

Applying the carry rule till periodic, $(12)_{2 \& 3}=\ldots . . .22215340_{2 \& 3}$ and $(43)_{2 \& 3}=\ldots 2221524051_{2 \& 3}$.

Every positive integer greater than five eventually has the repeated digit 2 in 6 -adic base $2 \& 3$.

Negative Integers

We can apply the negative of the carry rule to represent negative integers, eventually seeing a pattern.

Negative Integers

We can apply the negative of the carry rule to represent negative integers, eventually seeing a pattern. Or, applying the carry rule to zero, $0=\ldots 6^{6} 5976_{2 \& 3}$, so $-x=0-x$ digit by digit without carries.

Negative Integers

We can apply the negative of the carry rule to represent negative integers, eventually seeing a pattern. Or, applying the carry rule to zero, $0=\ldots 6^{6} 5976_{2 \& 3}$, so $-x=0-x$ digit by digit without carries.
$\mathrm{Eg}-12=\ldots 44420_{2 \& 3}$ and $-43=\ldots 444520325_{2 \& 3}$.

Fractions

The carry rule can't be applied to fractions.

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit.

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit. While the first still has two as a factor of the denominator or the second has three, shift right using $a / b \times 2^{i}=(2 a) / b \times 2^{i-1}$, $a / b \times 3^{i}=(3 a) / b \times 3^{i-1}$, until first and second fractions have inverses modulo two and three.

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit. While the first still has two as a factor of the denominator or the second has three, shift right using $a / b \times 2^{i}=(2 a) / b \times 2^{i-1}$, $a / b \times 3^{i}=(3 a) / b \times 3^{i-1}$, until first and second fractions have inverses modulo two and three. Then calculate next digit and shift.

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit. While the first still has two as a factor of the denominator or the second has three, shift right using $a / b \times 2^{i}=(2 a) / b \times 2^{i-1}$, $a / b \times 3^{i}=(3 a) / b \times 3^{i-1}$, until first and second fractions have inverses modulo two and three. Then calculate next digit and shift.
$\operatorname{Eg} 5 / 12=5 / 3 \times 2^{-2}=15 / 4 \times 3^{-2}$,

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit. While the first still has two as a factor of the denominator or the second has three, shift right using $a / b \times 2^{i}=(2 a) / b \times 2^{i-1}$, $a / b \times 3^{i}=(3 a) / b \times 3^{i-1}$, until first and second fractions have inverses modulo two and three. Then calculate next digit and shift.
$\operatorname{Eg} 5 / 12=5 / 3 \times 2^{-2}=15 / 4 \times 3^{-2}, 1 / 3 \equiv 1 \bmod 2$, $1 / 4 \equiv 1 \bmod 3$.

Fractions

The carry rule can't be applied to fractions. Start with $p / q=p / q \times 2^{0}=p / q=p / q \times 3^{0}$ in the units digit. While the first still has two as a factor of the denominator or the second has three, shift right using $a / b \times 2^{i}=(2 a) / b \times 2^{i-1}$, $a / b \times 3^{i}=(3 a) / b \times 3^{i-1}$, until first and second fractions have inverses modulo two and three. Then calculate next digit and shift.
$\operatorname{Eg} 5 / 12=5 / 3 \times 2^{-2}=15 / 4 \times 3^{-2}, 1 / 3 \equiv 1 \bmod 2$, $1 / 4 \equiv 1 \bmod 3$. With $x_{0}=5 / 3, y_{0}=15 / 4$,

- $d_{0}=3, x_{1}=(5 / 3-3) / 2=-2 / 3, y_{1}=(15 / 4-3) / 3=1 / 4$.
- $d_{1}=4, x_{2}=(-2 / 3-4) / 2=-7 / 3, y_{2}=(1 / 4-4) / 3=-5 / 4$.
- $d_{2}=1, x_{3}=(-7 / 3-1) / 2=-5 / 3, y_{3}=(-5 / 4-1) / 3=-3 / 4$.
- $d_{3}=3, x_{4}=(-5 / 3-3) / 2=-7 / 3, y_{4}=(-3 / 4-3) / 3=-5 / 4$. $\left(x_{4}, y_{4}\right)=\left(x_{2}, y_{2}\right)$, shifting by two digits $5 / 12=\ldots 313131.43_{2 \& 3}$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

- Base $-3 \&-2$, carry $[+1,-5,+6]$, digits $0 \rightarrow 5$, $12=(143220)_{-3 \&-2}$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

- Base $-3 \&-2$, carry $[+1,-5,+6]$, digits $0 \rightarrow 5$,
$12=(143220)_{-3 \&-2}$.
- Base $3 \&-2$, carry $[+1,-1,-6]$, digits $-1 \rightarrow 4,(\underline{1340})_{3 \&-2}$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

- Base $-3 \&-2$, carry $[+1,-5,+6]$, digits $0 \rightarrow 5$, $12=(143220)_{-3 \&-2}$.
- Base $3 \&-2$, carry $[+1,-1,-6]$, digits $-1 \rightarrow 4,(\underline{1340})_{3 \&-2}$.
- Base $4 \& 1$, carry $[+1,-5,4]$, digits $0 \rightarrow 4,10=(21.34)_{4 \& 1}$, $23=(112.333334)_{3 \& 4}$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

- Base $-3 \&-2$, carry $[+1,-5,+6]$, digits $0 \rightarrow 5$, $12=(143220)_{-3 \&-2}$.
- Base $3 \&-2$, carry $[+1,-1,-6]$, digits $-1 \rightarrow 4,(1340)_{3 \&-2}$.
- Base $4 \& 1$, carry $[+1,-5,4]$, digits $0 \rightarrow 4,10=(21.34)_{4 \& 1}$, $23=(112.333334)_{3 \& 4}$.
- Base $4 \& 1 / 2$, carry $[+2,-9,+4]$, digits $0 \rightarrow 8$, $27=(62.34)_{4 \& 1 / 2}, 163=(881.6674)_{4 \& 1 / 2}$.

Other Simultaneous Bases

With integer a, b, c, a carry rule is $[a, b, c]$. If x is the base, then $a x^{2}+b x+c=0$. Starting with a number in the units place and applying the carry rule lead to digits correct in the two given bases.

- Base $-3 \&-2$, carry $[+1,-5,+6]$, digits $0 \rightarrow 5$, $12=(143220)-3 \&-2$.
- Base $3 \&-2$, carry $[+1,-1,-6]$, digits $-1 \rightarrow 4,(\underline{1340})_{3 \&-2}$.
- Base $4 \& 1$, carry $[+1,-5,4]$, digits $0 \rightarrow 4,10=(21.34)_{4 \& 1}$, $23=(112.333334)_{3 \& 4}$.
- Base $4 \& 1 / 2$, carry $[+2,-9,+4]$, digits $0 \rightarrow 8$, $27=(62.34)_{4 \& 1 / 2}, 163=(881.6674)_{4 \& 1 / 2}$.
- Base $2 \& 3 \& 5$, carry $[+1,-10,+31,-30]$, digits $0 \rightarrow 29$, $43=\ldots 88890(21)(21) 1(13)_{2 \& 3 \& 5}$,
$143=\ldots 88891(14)(26)(24) 4(23)_{2 \& 3 \& 5}$.

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$.

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions $(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$,

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions $(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$, Digits are correct in bases ϕ and $1-\phi$ simultaneously.

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions $(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$, Digits are correct in bases ϕ and $1-\phi$ simultaneously.

New: metallic means are $\left(n+\sqrt{n^{2}+4}\right) / 2$,

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions $(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$, Digits are correct in bases ϕ and $1-\phi$ simultaneously.

New: metallic means are $\left(n+\sqrt{n^{2}+4}\right) / 2$, solutions to $x^{2}-n x-1=0$ so carry rule $[+1,-n,-1]$, and bases include negative!

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions
$(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$, Digits are correct in bases ϕ and $1-\phi$ simultaneously.

New: metallic means are $\left(n+\sqrt{n^{2}+4}\right) / 2$, solutions to $x^{2}-n x-1=0$ so carry rule $[+1,-n,-1]$, and bases include negative!

Eg Silver ratio $n=2$, bases $1 \pm \sqrt{2}$, carry $[+1,-2,-1]$ $[+1,-3,+1,+1]$, digits $0,1,2$,

Irrational Bases

Carry rule $[+a,+b,+c]$ leads to bases $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$.
Previously: base golden ratio (Bergman 1957), $10=(10100.0101)_{\phi}$. But, carry rule $[+1,-1,-1]$ or $[+1,-2,0,+1]$, quadratic $x^{2}-x-1=0$ has solutions
$(1 \pm \sqrt{5}) / 2=\phi, 1-\phi$, Digits are correct in bases ϕ and $1-\phi$ simultaneously.

New: metallic means are $\left(n+\sqrt{n^{2}+4}\right) / 2$, solutions to $x^{2}-n x-1=0$ so carry rule $[+1,-n,-1]$, and bases include negative!

Eg Silver ratio $n=2$, bases $1 \pm \sqrt{2}$, carry $[+1,-2,-1]$ $[+1,-3,+1,+1]$, digits $0,1,2,12=(112.3221)_{1 \pm \sqrt{2}}$.

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$.

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$. Eg $12=(133122)_{-2 \pm i}$.

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$. Eg $12=(133122)_{-2 \pm i}$.

Katai \& Szabo (1975): Gaussian integers $a+i b$ in base $-n+i$, digits $0 \rightarrow n^{2}$.

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$. Eg $12=(133122)_{-2 \pm i}$.

Katai \& Szabo (1975): Gaussian integers $a+i b$ in base $-n+i$, digits $0 \rightarrow n^{2}$. Proof and construction could lead to an infinite number of digits, carry rule approach fixes it.

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$. Eg $12=(133122)_{-2 \pm i}$.

Katai \& Szabo (1975): Gaussian integers $a+i b$ in base $-n+i$, digits $0 \rightarrow n^{2}$. Proof and construction could lead to an infinite number of digits, carry rule approach fixes it.

Gilbert (unpublished): Base $2+i$ with digits $\{0, \pm 1, \pm i\}$,

Complex Conjugate Bases, Gaussian Integers

Carry rule $[1,4,5]$ using digits $\{0,1,2,3,4\}$ has quadratic $x^{2}+4 x+5=0$ and bases $-2 \pm i$. Eg $12=(133122)_{-2 \pm i}$.

Katai \& Szabo (1975): Gaussian integers $a+i b$ in base $-n+i$, digits $0 \rightarrow n^{2}$. Proof and construction could lead to an infinite number of digits, carry rule approach fixes it.

Gilbert (unpublished): Base $2+i$ with digits $\{0, \pm 1, \pm i\}$, conversion is more challenging, and a topic for another day...

Does Base Ten Seem Boring Now?

Questions?

