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Integer Fraction Base 2and3 p-adic Form Bizarre

Outline

Integer Bases: Natural number, transforming, negative.

Fractional Bases: Traditional, new, arithmetic.

Base 2&3: Digits representing the same number in bases 2
and 3 simultaneously.

p-adic Interlude: negative integers and fractions

More Craziness: other simultaneous bases, irrational bases,
complex bases...
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Integer Fraction Base 2and3 p-adic Form Bizarre

Natural Number Base

Given a natural number base b > 1, a natural number has a unique
representation x = d0 + d1b + d2b

2 + · · ·+ dnb
n, each

di ∈ {0, 1, . . . , b − 1}, as (dndn−1 . . . d2d1d0)b.

Most significant first: Find successive powers of b until
bn+1 ≥ x . Let xn = x , then for k = n, n − 1, . . . , 0, dk = bxk/bc
and xk = dkb

k + xk−1.

222 to base 4: 40 = 1, 41 = 4, 42 = 16, 43 = 64, 44 = 256, so
222 = 3× 43 + 30, 30 = 1× 42 + 14, 14 = 3× 41 + 2,
1 = 2× 40 + 0, and 222 = (3132)4.
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Least Significant First

x

b
=
⌊x
b

⌋
+

x − bbx/bc
b

=
d0
b

+ d1 + d2b + · · ·+ dnb
n−1.

Equate integer and fractional parts, let y1 = bx/bc, d0 = x − by1.
Repeat yk = byk−1/bc, dk = yk−1 − byk until yn = 0.

222 to base 4: 222 = 55× 4 + 2, 55 = 13× 4 + 3, 13 = 3× 4 + 1,
3 = 0× 4 + 3, 222 = (3132)4.

Using Carries: Since b × bk = 1× bk+1, subtracting b from a
digit is balanced by adding one to the digit to the left. Apply
[+1,−b] starting with number in the units digit.

222 to base 4: (222)
55→ (55, 2)

13→ (13, 3, 2)
3→ (3, 1, 3, 2).
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Other Digit Sets

The digit set {1, 2, . . . , b} always works, shifting higher may
not.

Balanced notation uses digits from −(b− 1)/2 to (b− 1)/2 (b
odd) or −b/2 + 1 to b/2 (b even). Less symbols, dramatically
fewer carries, no notational difference between positive and
negative, so subtraction is as easy as addition. Division is
more challenging, best by Egyptian doubling/subtraction.

Odlyzko (1978): base ten with {0, 1, 2, 3, 4, 50, 51, 52, 53, 54},
Matula (1982): base three with {0, 1,−7}, and complete
theory (including 0).
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Negative Integer Base

The carries approach in base −b has carry rule [+1,+b], and
means positive and negative integers can be represented without a
negative sign.

Eg In base minus ten with carry rule [1, 10]:

(222)
−22→ (−22, 2)

3→ (3, 8, 2), so 222 = (382)−10.

(−222)
23→ (23, 8)

−2→ (−2, 3, 8)
1→ (1, 8, 3, 8), −222 = (1838)−10.

Check: 3× 100− 8× 10 + 2 = 222,
−1× 1000 + 8× 100− 3× 10 + 8 = −222.

Arithmetic in a negative base is surprisingly subtle, and addition
can lead to an infinite number of carries. I’ve shown reallocation
can be used to get a finite result. Subtraction looks like
positive base addition with carries!
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Traditional Approach

In 1936, Kempner pointed out any real could be the base using
nonnegative integers less than b as digits.

Unfortunately, this
requires digits after the radix point, and usually isn’t periodic.

Eg in base
3

2
, 10 =

(
3

2

)5

+

(
3

2

)1

+

(
3

2

)−1
+

(
3

2

)−4
+

(
3

2

)−8
+

(
3

2

)−15
+

344,543

459,165,024
, 10 = (100010.100100010000001...)3/2.

And 12 = (100.2302101 . . .)10/3.

We also lack uniqueness:
2 = (10.01000001 . . .)3/2 = (0.111 . . .)3/2.
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Propp’s Base p/q

Around 1995, James Propp (inspired by a relative of the chip firing
game) discovered a finite representation of natural numbers in
fractional base p/q > 1, using digits {0, 1, . . . , p − 1}.

Since p

(
p

q

)k

=
pk+1

qk
= q

(
p

q

)k+1

, the carry rule is [+q,−p].

Uniqueness: only one choice for each digit. Existence: carry to the
left reduces the magnitude.

If 0 < p/q < 1, digits {0, 1, . . . , q − 1}, carry to the right.
Negative base −p/q has carry rule [+q,+p]. If p/q not in lowest
form, lose uniqueness: 10 = (21010)3/2 = (21010)6/4
= (44)6/4.
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Conversion

To convert to Propp base p/q, start with number in the units
digit, and apply the carry rule as many times as necessary.

Eg base 3/2 with [+2,−3]: (10)
3→ (6, 1)

2→ (4, 0, 1)
1→ (2, 1, 0, 1).

Check: 2

(
3

2

)3

+

(
3

2

)2

+ 1 =
27

4
+

9

4
+ 1 =

40

4
= 10.

Eg base 10/3 with [+3,−10]: (10)
1→ (3, 0), (12)

1→ (3, 2),

(222)
22→ (66, 2)

6→ (18, 6, 2)
1→ (3, 8, 6, 2).

Backwards in base 10/3: (9, 9, 8, 2)
−3→ (39, 8, 2)

−13→ (138, 2)
−46→ (462), but (9, 8, 8, 2)

−3→ (0, 38, 8, 2)
−12→ (0, 2, 128, 2)

−42→ (0, 2, 2, 422). 2× 100

9
+ 2× 10

3
+ 422 = 450

8

9
.
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Arithmetic in Base 3/2

Addition is as for traditional positional notation, right to left,
but in base 3/2 sometimes carries two digits:
(2)3/2 + (1)3/2 = (20)3/2, (2)3/2 + (2)3/2 + (2)3/2 = (210)3/2.

Multiplication is also straightforward, easier with lattice
separating digit products from carries.

Subtraction is easy by reallocation: search left for a two that
can be reallocated.

Division is hard, because shifting digits doesn’t give a natural
number quotient. Best is Egyptian approach: successive
doubling divisor until too big, then subtracting.

To identify if digits represent a natural number, divide by one
and see if there is a remainder!

Fractions appear to have an infinite number of
representations.
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Base 2&3 Motivation

The base two carry rule is [+1,−2], or [+1,−2, 0].

Shifted,
[+1,−2, 0] + 3[0,−1,+2] = [+1,−5,+6].

The base three carry rule is [+1,−3].
[+1,−3, 0] + 2[0,−1,+3] = [+1,−5,+6]. The same three digit
carry rule applied to digits doesn’t change the number they
represent in bases two or three. Call this base 2&3?

Note as polynomial coefficients, b − 2 = 0→ b = 2,
b − 3 = 0→ b = 3, b2 − 5b + 6 = (b − 2)(b − 3) = 0→ b = 2, 3.
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b − 3 = 0→ b = 3, b2 − 5b + 6 = (b − 2)(b − 3) = 0→ b = 2, 3.
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Counting Up

The carry rule [+1,−5,+6] using the digits {0, 1, 2, 3, 4} could line
up the −5 with the digit to reduce.

1 = 12&3, 2 = 22&3, 3 = 32&3, and 4 = 42&3,
5 = 52&3 = 10.62&3 = 11.162&3 = 11.2162&3 = 11.22162&3 =
11.222162&3 = · · · . So 5 = 11.222 . . .2&3. Check:
11.222 . . .2 = 2 + 1 + 2 = 5, 11.222 . . .3 = 3 + 1 + 1 = 5.

6 = 12.222 . . .2&3 , 7 = 13.222 . . .2&3 , 8 = 14.222 . . .2&3,
9 = 15.222 . . .2&3 = 20.8222 . . .2&3 = 21.38222 . . .2&3 =
21.438222 . . .2&3 = 21.4438222 . . .2&3 = 21.44438222 . . .2&3 =
· · · . So 9 = 21.444 . . .2&3.
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Continuing

10 = 22.444 . . .2&3 , 11 = 23.444 . . .2&3 , 12 = 24.444 . . .2&3,

13 = 25.444 . . .2&3 = 30.(10)444 . . .2&3 = 32.0(16)444 . . .2&3 =
33.31(22)444 . . .2&3 = 32.352(28)444 . . .2&3 =
32.408(28)444 . . .2&3 = 32.413(34)444 . . .2&3 =
32.4194(40)444 . . .2&3 = 32.424(10)(40)444 . . .2&3 =
32.4260(52)444 . . .2&3 = · · · .
After a million applications of the carry rule,
13 = 32.444444444444322223442441414(39)(44)(18 217)
(8 978 498)(26 352 477)(3 348 444 877)(10 311 561 742)444 . . .2&3.
Unfortunately 32.444 . . .3 = 13, but 32.444 . . .2 = 12, so 13 (and
higher) don’t appear to work :-(
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Digits {−1, 0, 1, 2, 3, 4}

Apply the carry rule [−1 + 5,−6] to the left, lining up the −6 to
reduce the rightmost digit that is too large.

Zero through five
leads to infinitely many carries to the left, but a finite number of
digits can be obtained starting at −1 ≡ 1. Counting up,

1 = 12&3, 2 = 22&3, 3 = 32&3, 4 = 42&3,
5 = 52&3 = 1512&3 = 14112&3, 6 = 14102&3, 7 = 14112&3,

8 = 14122&3, 9 = 14132&3, 10 = 14142&3,
11 = 14152&3 = 13412&3, 12 = 13402&3,

and so on. Or using the carry rule directly,

(12)2&3
−2→ (−2)(10)02&3

−1→ 13402&3, and

(43)2&3
−7→ (−7)(35)12&3

−6→ (−6)(23)112&3
−4→ (−4)(14)1112&3

−2→ (−2)621112&3
−1→ 13021112&3.
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Outline of Proof

Theorem: For integers x ≥ y ≥ −1 there is a unique finite
sequence of digits from −1 to 4 representing x in base 2 and y in
base 3.

Uniqueness: rightmost digit must be congruent to x mod 2 and
y mod 3, unique choice from −1 to 4. Let x ′ = (x − d)/2,
y ′ = (y − d)/3, and repeat with x = x ′, y = y ′.

Existence: If y ≥ 1, y ′ = (y − d)/3 ≥ (y − 4)/3 ≥ (1− 4)/3 = −1.
If y = 0, y ′ = 0,−1. If y = −1, y ′ = 0,−1. If x ≥ y , x ′ ≥ 3y ′/2.
y ′ ≥ 0,−1 cases lead to x ′ ≥ y ′. So if x ≥ y ≥ −1, x ′ ≥ y ′ ≥ −1.

x ′ + y ′ < x + y when 3x + 4y > 5. Checking the seven cases
where this is not true all converge to x = y = 0.
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Alternate Construction

Our proof gives a different way of finding digits: start with
x0 = y0 = x . Given pair (xi , yi ), find digit di ∈ {−1, 0, 1, 2, 3, 4}
congruent to xi mod 2 and yi mod 3, set xi+1 = (xi − di )/2,
yi+1 = (yi − di )/3, until xk = yk = 0.

With x0 = y0 = 43:
• 43 mod 2 = 1, 43 mod 3 = 1: d0 = 1 and x1 = 21, y1 = 14.
• 21 mod 2 = 1, 14 mod 3 = 2: d1 = −1 and x2 = 11, y2 = 5.
• 11 mod 2 = 1, 5 mod 3 = 2: d2 = −1 and x3 = 6, y3 = 2.
• 6 mod 2 = 0, 2 mod 3 = 2: d3 = 2 and x4 = 2, y4 = 0.
• 2 mod 2 = 0, 0 mod 3 = 0: d4 = 0 and x5 = 1, y5 = 0.
• 1 mod 2 = 1, 0 mod 3 = 0: d5 = 3 and x6 = −1, y6 = −1.
• −1 mod 2 = 1, −1 mod 3 = 2: d6 = −1 and x7 = 0, y7 = 0.
Reading off the digits, 43 = 13021112&3 again.
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p-adic Interlude

p-adic numbers extend the rationals with a different definition of
closeness, and allow an infinite number of digits to the left.

In base
5, 142 = . . . 00010325.

What about x = . . . 4445? (x − 4)/5 = x , or x = −1. Check:
. . . 00015 + . . . 4445 = . . . 0005. Since −x = (−1− x) + 1,
subtract the digits of x from . . . 4445, add one. Exactly how
computers handle negatives in base 2, and how mechanical adding
machines performed subtraction.

What about x = . . . 1313135? Base five arithmetic:
(x − 135)/52 = x , x = (−13/44)5 = (−1/3)5. Then
. . . 131313045 = (−1/3)5 · 52 + 45 = (−100/3 + 30/3)5
= (−20/3)5.
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From Fraction to p-adic Form

Every integer has a multiplicative inverse mod prime p: if
b · β ≡ 1 mod p then 1/b ≡ β mod p.

Then
a/b = aβ ≡ d0 mod p, units digit. Shift (a/b − d)/p and repeat.

Eg 1/6 in 5-adic, arithmetic in base ten: 1/6 ≡ 1 mod 5, so
starting with x0 = 1/6,
• 1/6 ≡ 1× 1 mod 5, d0 = 1, x1 = (1/6− 1)/5 = −1/6.
• −1/6 ≡ −1× 1 mod 5 = −1 ≡ 4 mod 5, d1 = 4, x2 = −5/6.
• −5/6 ≡ −5× 1 mod 5 = −5 ≡ 0 mod 5, d2 = 0, x3 = −1/6.
x3 = x1 repeating, 1/6 = . . . 04040415.
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More p-adic Fractions

Non-prime base is fine (although ab = 0 with a, b 6= 0 is possible).

If denominator has common factors with the base, no
multiplicative inverse. Shift digits to the right of the radix point
until denominator has no common factors with the base.

Eg 7/60 in base ten. 7/60 = 7/6× 10−1 = 35/3× 10−2.
1/3 ≡ 7 mod 10. With x0 = 35/3:
• 35/3 ≡ 35× 7 mod 10 = 245 mod 10 ≡ 5 mod 10 , d1 = 5,
x2 = (35/3− 5)/10 = 2/3.
• 2/3 ≡ 2× 7 mod 10 = 14 mod 10 ≡ 4 mod 10, d2 = 4,
x3 = (2/3− 4)/10 = −1/3.
• −1/3 ≡ −1× 7 mod 10 = −7 mod 10 ≡ 3 mod 10, d3 = 3,
x4 = (−1/3− 3)/10 = −1/3 = x3.
So 35/3 = . . . 33345, and 7/60 = . . . 333.45. Ordinary
decimal multiplication: . . . 333.45× 60 = . . . 0007.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

More p-adic Fractions

Non-prime base is fine (although ab = 0 with a, b 6= 0 is possible).
If denominator has common factors with the base, no
multiplicative inverse.

Shift digits to the right of the radix point
until denominator has no common factors with the base.

Eg 7/60 in base ten. 7/60 = 7/6× 10−1 = 35/3× 10−2.
1/3 ≡ 7 mod 10. With x0 = 35/3:
• 35/3 ≡ 35× 7 mod 10 = 245 mod 10 ≡ 5 mod 10 , d1 = 5,
x2 = (35/3− 5)/10 = 2/3.
• 2/3 ≡ 2× 7 mod 10 = 14 mod 10 ≡ 4 mod 10, d2 = 4,
x3 = (2/3− 4)/10 = −1/3.
• −1/3 ≡ −1× 7 mod 10 = −7 mod 10 ≡ 3 mod 10, d3 = 3,
x4 = (−1/3− 3)/10 = −1/3 = x3.
So 35/3 = . . . 33345, and 7/60 = . . . 333.45. Ordinary
decimal multiplication: . . . 333.45× 60 = . . . 0007.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

More p-adic Fractions

Non-prime base is fine (although ab = 0 with a, b 6= 0 is possible).
If denominator has common factors with the base, no
multiplicative inverse. Shift digits to the right of the radix point
until denominator has no common factors with the base.

Eg 7/60 in base ten. 7/60 = 7/6× 10−1 = 35/3× 10−2.
1/3 ≡ 7 mod 10. With x0 = 35/3:
• 35/3 ≡ 35× 7 mod 10 = 245 mod 10 ≡ 5 mod 10 , d1 = 5,
x2 = (35/3− 5)/10 = 2/3.
• 2/3 ≡ 2× 7 mod 10 = 14 mod 10 ≡ 4 mod 10, d2 = 4,
x3 = (2/3− 4)/10 = −1/3.
• −1/3 ≡ −1× 7 mod 10 = −7 mod 10 ≡ 3 mod 10, d3 = 3,
x4 = (−1/3− 3)/10 = −1/3 = x3.
So 35/3 = . . . 33345, and 7/60 = . . . 333.45. Ordinary
decimal multiplication: . . . 333.45× 60 = . . . 0007.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

More p-adic Fractions

Non-prime base is fine (although ab = 0 with a, b 6= 0 is possible).
If denominator has common factors with the base, no
multiplicative inverse. Shift digits to the right of the radix point
until denominator has no common factors with the base.

Eg 7/60 in base ten.

7/60 = 7/6× 10−1 = 35/3× 10−2.
1/3 ≡ 7 mod 10. With x0 = 35/3:
• 35/3 ≡ 35× 7 mod 10 = 245 mod 10 ≡ 5 mod 10 , d1 = 5,
x2 = (35/3− 5)/10 = 2/3.
• 2/3 ≡ 2× 7 mod 10 = 14 mod 10 ≡ 4 mod 10, d2 = 4,
x3 = (2/3− 4)/10 = −1/3.
• −1/3 ≡ −1× 7 mod 10 = −7 mod 10 ≡ 3 mod 10, d3 = 3,
x4 = (−1/3− 3)/10 = −1/3 = x3.
So 35/3 = . . . 33345, and 7/60 = . . . 333.45. Ordinary
decimal multiplication: . . . 333.45× 60 = . . . 0007.
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Six-adic Base 2&3, Natural Numbers

Using the carry rule [−1,+5,−6] to the left, we get 6-adic form in
base 2&3 using digits {0, 1, 2, 3, 4, 5}.

6 = 62&3 = 1502&3 = 155502&3 = 1415502&3 = 14215502&3 =
142215502&3 = 1422215502&3 = · · · = . . . 22215502&3.

. . . 22215502 = . . . 22217102 = . . . 22241102 = . . . 22401102 =

. . . 24001102 = . . . 240001102 = · · · = . . . 0001102 = 1102 = 6,
and . . . 22215503 = . . . 22216203 = . . . 22230203 = . . . 22300203 =
. . . 23000203 = . . . 230000203 = · · · = . . . 000203 = 203 = 6.

Applying the carry rule till periodic, (12)2&3 = . . . ...222153402&3

and (43)2&3 = . . . 22215240512&3.

Every positive integer greater than five eventually has
the repeated digit 2 in 6-adic base 2&3.
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Negative Integers

We can apply the negative of the carry rule to represent negative
integers, eventually seeing a pattern.

Or, applying the carry rule to
zero, 0 = . . . 66659762&3, so −x = 0− x digit by digit without
carries.

Eg −12 = . . . 444202&3 and −43 = . . . 4445203252&3.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

Negative Integers

We can apply the negative of the carry rule to represent negative
integers, eventually seeing a pattern. Or, applying the carry rule to
zero, 0 = . . . 66659762&3, so −x = 0− x digit by digit without
carries.

Eg −12 = . . . 444202&3 and −43 = . . . 4445203252&3.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

Negative Integers

We can apply the negative of the carry rule to represent negative
integers, eventually seeing a pattern. Or, applying the carry rule to
zero, 0 = . . . 66659762&3, so −x = 0− x digit by digit without
carries.

Eg −12 = . . . 444202&3 and −43 = . . . 4445203252&3.

Stephen Lucas Crazy Bases: Fractions and Twoandthree



Integer Fraction Base 2and3 p-adic Form Bizarre

Fractions

The carry rule can’t be applied to fractions.

Start with
p/q = p/q × 20 = p/q = p/q × 30 in the units digit. While the
first still has two as a factor of the denominator or the second has
three, shift right using a/b × 2i = (2a)/b × 2i−1,
a/b × 3i = (3a)/b × 3i−1, until first and second fractions have
inverses modulo two and three. Then calculate next digit and shift.

Eg 5/12 = 5/3× 2−2 = 15/4× 3−2, 1/3 ≡ 1 mod 2,
1/4 ≡ 1 mod 3. With x0 = 5/3, y0 = 15/4,
• d0 = 3, x1 = (5/3− 3)/2 = −2/3, y1 = (15/4− 3)/3 = 1/4.
• d1 = 4, x2 = (−2/3− 4)/2 = −7/3, y2 = (1/4− 4)/3 = −5/4.
• d2 = 1, x3 = (−7/3− 1)/2 = −5/3, y3 = (−5/4− 1)/3 = −3/4.
• d3 = 3, x4 = (−5/3− 3)/2 = −7/3, y4 = (−3/4− 3)/3 = −5/4.
(x4, y4) = (x2, y2), shifting by two digits
5/12 = . . . 313131.432&3.
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Other Simultaneous Bases

With integer a, b, c , a carry rule is [a, b, c].

If x is the base, then
ax2 + bx + c = 0. Starting with a number in the units place and
applying the carry rule lead to digits correct in the two given bases.
• Base −3&− 2, carry [+1,−5,+6], digits 0→ 5,
12 = (143220)−3&−2.
• Base 3&− 2, carry [+1,−1,−6], digits −1→ 4, (1340)3&−2.
• Base 4&1, carry [+1,−5, 4], digits 0→ 4, 10 = (21.34)4&1,
23 = (112.333334)3&4.
• Base 4&1/2, carry [+2,−9,+4], digits 0→ 8,
27 = (62.34)4&1/2, 163 = (881.6674)4&1/2.
• Base 2&3&5, carry [+1,−10,+31,−30], digits 0→ 29,
43 = . . . 88890(21)(21)1(13)2&3&5,
143 = . . . 88891(14)(26)(24)4(23)2&3&5.
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12 = (143220)−3&−2.
• Base 3&− 2, carry [+1,−1,−6], digits −1→ 4, (1340)3&−2.

• Base 4&1, carry [+1,−5, 4], digits 0→ 4, 10 = (21.34)4&1,
23 = (112.333334)3&4.
• Base 4&1/2, carry [+2,−9,+4], digits 0→ 8,
27 = (62.34)4&1/2, 163 = (881.6674)4&1/2.
• Base 2&3&5, carry [+1,−10,+31,−30], digits 0→ 29,
43 = . . . 88890(21)(21)1(13)2&3&5,
143 = . . . 88891(14)(26)(24)4(23)2&3&5.
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Irrational Bases

Carry rule [+a,+b,+c] leads to bases
(
−b ±

√
b2 − 4ac

)/
(2a).

Previously: base golden ratio (Bergman 1957),
10 = (10100.0101)φ. But, carry rule [+1,−1,−1] or
[+1,−2, 0,+1], quadratic x2 − x − 1 = 0 has solutions
(1±

√
5)/2 = φ, 1− φ, Digits are correct in bases φ and 1− φ

simultaneously.

New: metallic means are
(
n +
√
n2 + 4

)/
2, solutions to

x2 − nx − 1 = 0 so carry rule [+1,−n,−1], and bases include
negative!

Eg Silver ratio n = 2, bases 1±
√

2, carry [+1,−2,−1] or
[+1,−3,+1,+1], digits 0, 1, 2, 12 = (112.3221)1±

√
2.
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Complex Conjugate Bases, Gaussian Integers

Carry rule [1, 4, 5] using digits {0, 1, 2, 3, 4} has quadratic
x2 + 4x + 5 = 0 and bases −2± i .

Eg 12 = (133122)−2±i .

Katai & Szabo (1975): Gaussian integers a + ib in base −n + i ,
digits 0→ n2. Proof and construction could lead to an infinite
number of digits, carry rule approach fixes it.

Gilbert (unpublished): Base 2 + i with digits {0,±1,±i},
conversion is more challenging, and a topic for another day...
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Does Base Ten Seem Boring Now?

Questions?
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