Generating Fractals Using Complex Functions

Avery Wengler and Eric Wasser

What is a Fractal?

- Fractals are infinitely complex patterns that are self-similar across different scales.
- Created by repeating simple processes over and over in a feedback loop.
- Often represented on the complex plane as 2-dimensional images

Where do we find fractals?

Fractals in Nature

Lungs

Oak Tree

Neurons from the human cortex

Regardless of scale, these patterns are all formed by repeating a simple branching process.

Geometric Fractals

"A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole." Mandelbrot (1983)

The Sierpinski Triangle

Algebraic Fractals

- Fractals created by repeatedly calculating a simple equation over and over.
- Were discovered later because computers were needed to explore them
- Examples:
 - Mandelbrot Set
 - Julia Set
 - Burning Ship Fractal

Mandelbrot Set

- Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer
- $Z_{n+1} = Z_n^2 + C$
- That is, a complex number *c* is part of the Mandelbrot set if, when starting with $z_0 = 0$ and applying the iteration repeatedly, the absolute value of z_n remains bounded however large *n* gets.

Animation based on a static number of iterations per pixel.

The Mandelbrot set is the complex numbers *c* for which the sequence $(c, c^2 + c, (c^2+c)^2 + c, ((c^2+c)^2+c)^2 + c, (((c^2+c)^2+c)^2+c)^2 + c, ...)$ does not approach infinity.

Julia Set

- Closely related to the Mandelbrot fractal
- Complementary to the Fatou Set

n = 101

Featherino Fractal

 $\frac{f(x_n)}{f'(x_n)}$

 $x_{n+1} = x_n$

Newton's method for the roots of a real valued function

Burning Ship Fractal

z² Mandelbrot Render

Generic Mandelbrot set. init: z = @start loop: z = z^@power + #pixel bailout: |z| <= @bailout

z³ Mandelbrot Render

z⁴ Mandelbrot Render

1.36x10¹⁶ Magnification

Extra: If the original z^2 Mandelbrot render were 1m wide, this would be smaller than the diameter of a proton.

Sources

http://en.wikipedia.org/wiki/Fractal http://fractalfoundation.

org/fractivities/FractalPacks-EducatorsGuide.pdf

http://en.wikipedia.org/wiki/Burning_Ship_fractal

https://www.math.ucdavis.

edu/~thomases/W11_16C1_lec_3_11_11.pdf

http://en.wikipedia.org/wiki/Mandelbrot_set