Riemann Surfaces

Codie Lewis and Shirley Shi

Bernard Riemann

German

 Contributions to: analysis, number theory, and geometry

 Developed uniformization theorem

http://en.wikipedia.org/wiki/Bernhard Riemann

Definition & Uniformization Theorem

Definition: A Riemann surface is a one dimensional Complex manifold

"a surface-like configuration that covers the complex plane" — Wolfram Math World

- Elliptic (Riemann Sphere): $\mathbb{C} \cup \{\infty\}$ also $P^1 \mathbb{C}$
- Parabolic: Complex Plane C
- Hyperbolic: the open unit disk $\{z \in C : |z| < 1\}$

Elliptic

• The Riemann sphere

Elliptic geometry

Compact

• Curvature of +1

http://en.wikipedia.org/wiki/Riemann_sphere

Parabolic

- Isomorphic to $\mathbb C$ plane
 - Identity map f(z)=z
 - Conjugate map f(z)=z*

Not compact

Curvature of 0
 (Euclidean Geometry)

Hyperbolic Riemann Surfaces

 Hyperbolic: the Riemann surfaces with curvature -1.

- According to the Uniformization theorem, all hyperbolic surfaces are quotients of the unit disk.
- Unlike elliptic and parabolic, no classification of the hyperbolic surfaces is possible.

http://en.wikipedia.org/wiki/Hyperbolic_geometry

Riemann Mapping Theorem

 Any open, simply connected region is isomorphic to the open unit disk.

- Isomorphism f(z)=w
 - Holomorphic
 - Unique

http://mathworld.wolfram.com/SimplyConnected.html

Relation to Branching Structures

- The branching theorem assumes a Riemann surface
- Branch points can be thought of as punctures in the initial Riemann sphere.
 - 0 gives sphere
 - 1 or 2 gives complex plane or cylinder
 - 3 or more gives hyperbolic structures

http://en.wikipedia.org/wiki/Argument_(complex_analysis)

Resources

- Brown, J., & Churchill, R. (2013). Complex Variables and Applications (9th edition). New York, NY: McGraw-Hill Science/ Engineering/ Math.
- http://en.wikipedia.org/wiki/Hyperbolic_space
- http://en.wikipedia.org/wiki/Riemann_surface#Classification_of _Riemann_surfaces
- http://mathworld.wolfram.com/RiemannMappingTheorem.html
- http://en.wikipedia.org/wiki/Hyperbolic_geometry
- http://mathworld.wolfram.com/SimplyConnected.html
- #http://en.wikipedia.org/wiki/Riemann_surface#Definitions
- http://en.wikipedia.org/wiki/Argument_(complex_analysis)