

Riemann Zeta Function

Ben Dulaney
Jonathan Gerhard

March 19, 2015

What is the ζ function?

Consider the series

$$
Z(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Notice that for $\Re(s) \leq 1, Z(s)$ will diverge.

What is the ζ function?

Consider the series

$$
Z(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Notice that for $\Re(s) \leq 1, Z(s)$ will diverge.
Example

$$
Z(1)=1+\frac{1}{2}+\frac{1}{3}+\ldots
$$

This is the harmonic series, which we know diverges.

What is the ζ function?

Euler was able to show that

$$
\begin{gathered}
Z(2)=\frac{\pi^{2}}{6}, \text { and } \\
Z(4)=\frac{\pi^{4}}{90} .
\end{gathered}
$$

Euler also noticed a connection between this series and prime numbers.

What is the ζ function?

Euler was able to show that

$$
\begin{gathered}
Z(2)=\frac{\pi^{2}}{6}, \text { and } \\
Z(4)=\frac{\pi^{4}}{90} .
\end{gathered}
$$

Euler also noticed a connection between this series and prime numbers.

$$
Z(s)=\prod_{\text {prime } p} \frac{1}{1-p^{-s}}
$$

What is the ζ function?

Euler was able to show that

$$
\begin{gathered}
Z(2)=\frac{\pi^{2}}{6}, \text { and } \\
Z(4)=\frac{\pi^{4}}{90} .
\end{gathered}
$$

Euler also noticed a connection between this series and prime numbers.

$$
Z(s)=\prod_{\text {prime } p} \frac{1}{1-p^{-s}}
$$

This product formula can be used to calculate the probability that a random set of integers are relatively prime.

What is the ζ function?

Euler was able to show that

$$
\begin{gathered}
Z(2)=\frac{\pi^{2}}{6}, \text { and } \\
Z(4)=\frac{\pi^{4}}{90} .
\end{gathered}
$$

Euler also noticed a connection between this series and prime numbers.

$$
Z(s)=\prod_{\text {prime } p} \frac{1}{1-p^{-s}}
$$

This product formula can be used to calculate the probability that a random set of integers are relatively prime.
This probability actually ends up being $\frac{1}{Z(s)}$.

The Riemann ζ Function

Riemann worked to extend this function to the entire complex plane (except where $s=1$, where there is a pole).

The Riemann ζ Function

Riemann worked to extend this function to the entire complex plane (except where $s=1$, where there is a pole).
First, the Gamma function $\Gamma(s)$ is the analytic continuation of the factorial, and was found by Euler. That is, for integer $s>1$, we have $\Gamma(s)=(s-1)$!.

The Riemann ζ Function

Riemann worked to extend this function to the entire complex plane (except where $s=1$, where there is a pole).
First, the Gamma function $\Gamma(s)$ is the analytic continuation of the factorial, and was found by Euler. That is, for integer $s>1$, we have $\Gamma(s)=(s-1)$!.

Gamma fundion

$$
\Gamma(s)=\int_{0}^{\infty} \frac{d t}{t} t^{s} e^{-1}, \Re(s)>0
$$

The Riemann ζ Function

Consider the integral

$$
\begin{aligned}
L=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x & =\int_{0}^{\infty} \frac{x^{s-1} e^{-x}}{1-e^{-x}} d x \\
& =\sum_{n=0}^{\infty} \int_{0}^{\infty} x^{s-1} e^{-(n+1) x} d x \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(s)}{(n+1)^{s}} \\
& =\Gamma(s) \zeta(s)
\end{aligned}
$$

The Riemann ζ Function

Consider the integral

$$
\begin{aligned}
L=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x & =\int_{0}^{\infty} \frac{x^{s-1} e^{-x}}{1-e^{-x}} d x \\
& =\sum_{n=0}^{\infty} \int_{0}^{\infty} x^{s-1} e^{-(n+1) x} d x \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(s)}{(n+1)^{s}} \\
& =\Gamma(s) \zeta(s)
\end{aligned}
$$

Since we know $L=\Gamma(s) \zeta(s)$, we have

$$
\zeta(s)=\frac{L}{\Gamma(s)} .
$$

The Riemann ζ Function

Consider the contour integral

$$
K=\int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

The Riemann ζ Function

Consider the contour integral

$$
K=\int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

Then

$$
K=-2 i \sin (\pi(s-1)) L
$$

The Riemann ζ Function

Consider the contour integral

$$
K=\int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

Then

$$
K=-2 i \sin (\pi(s-1)) L
$$

From this, we obtain the fantastically amazing result that

$$
\zeta(s)=\frac{1}{2 i \sin (\pi s)} \frac{1}{\Gamma(s)} \int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

The Riemann ζ Function

Consider the contour integral

$$
K=\int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

Then

$$
K=-2 i \sin (\pi(s-1)) L
$$

From this, we obtain the fantastically amazing result that

$$
\zeta(s)=\frac{1}{2 i \sin (\pi s)} \frac{1}{\Gamma(s)} \int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

Since $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}$, we get the final form of the ζ function as

$$
\zeta(s)=\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z
$$

Some Surprising Results

Using this analytic continuation, we can obtain some fascinating results.

$$
\begin{aligned}
\zeta(0) & =-\frac{1}{2} \\
\zeta(-1) & =-\frac{1}{12} \\
\zeta(-2 m) & =0 \\
\zeta(-3) & =\frac{1}{120} \\
\zeta(2 m) & =\frac{(2 \pi)^{2 m}}{2(2 m)!}\left|B_{2 m}\right| \\
\zeta(1-2 m) & =-\frac{B_{2 m}}{2 m}
\end{aligned}
$$

References

- http://www.nhn.ou.edu/~milton/p5013/zeta.pdf
- http://www.math.jhu.edu/~wright/RH2.pdf
- http:
//mathworld.wolfram.com/RiemannZetaFunction.html
- http:
//en.wikipedia.org/wiki/Riemann_zeta_function

Thank You!

