Math 360: Fourier Transforms \& Differential Equations

Noah \mathbb{W} atson \& \mathbb{Z} ev Woodstock

Definitions:

Fourier Transformation:

$$
\mathcal{F}(f(x))=\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x
$$

Inverse Fourier Transformation:

$$
\mathcal{F}^{-1}(\hat{f}(\xi))=f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi
$$

Properties:

Linearity

$$
(1) \mathcal{F}(f+g)=\mathcal{F}(f)+\mathcal{F}(g) \quad(2) \mathcal{F}(c \cdot f)=c \cdot \mathcal{F}(f)
$$

Inverses

$$
\mathcal{F}^{-1}(\mathcal{F}(f(x)))=\mathcal{F}\left(\mathcal{F}^{-1}(f(x))\right)=f(x)
$$

Differentiation Property (proof given in presentation)

$$
\mathcal{F}\left(f^{\prime}(x)\right)=(2 \pi i \xi) \mathcal{F}(f(x))
$$

Using the differentiation property, Fourier Transforms can be used to simplify partial differential equations into ordinary differential equations (or simpler PDE's)

Example: Given the wave equation, $u_{t t}=u_{x x} \forall t>0, x \in(-\infty, \infty)$, we can apply the Fourier Transform to both sides, $\mathcal{F}\left(u_{x x}(x, t)\right)=-(2 \pi \xi)^{2} \mathcal{F}(u(x, t))$ and since the transform only switches $x \leftrightarrow \xi, \mathcal{F}\left(u_{t t}(x, t)\right)=\frac{d^{2}}{d t^{2}} \mathcal{F}(u(x, t))$. For simpler notation, we let $v:=\mathcal{F}(u(x, t)$, and the problem reduces to

$$
v_{t t}=-(2 \pi \xi)^{2} v
$$

which is an ODE with respect to the variable, t. This can be solved using a method of the characteristic equation, assuming v is of the form $e^{\lambda t}$; solving for λ we see $\lambda= \pm(2 \pi \xi)$, which solves part of our PDE:

$$
\mathcal{F}(u(x, t))=v=e^{ \pm 2 \pi \xi t}
$$

Using this, we can apply the inverse fourier transform to the equation for our solution.

