Math 360 Spring 2015 Midterm Exam

March 2015

Honor Pledge: I understand that it is a violation of the JMU honor code to give or receive unauthorized aid on this exam. Furthermore, I understand that I am obligated to report any violation of the honor code by other students that I may become aware of, and that my failure to do so is itself a violation. No phones, or other electronic devices, other than a calculator, may be accessed during this test. Doing so will be considered a violation of the honor code.

Name: \qquad
Signature:

1 Solve the following to the best of your knowledge

1. Solve the equation $z^{4}=-16$, and plot the roots in the complex plane.
2. (a) What is the image of the upper half plane under the transformation $f(z)=z^{3}$? Is this transformation one-to-one? Discuss and use graphs and polar coordinates if necessary.
(b) Explain why the function e^{z} is periodic, and discuss the image of the complex plane under the exponential transformation.
3. (a) Find the harmonic conjugate $v(x, y)$ of the function $u(x, y)=y^{2}-x^{2}$ in the complex plane. Deduce the analytic function $f(z)=u+i v$ in terms of z. Plot the level sets $u(x, y)=c_{i}$ and $v(x, y)=c_{j}$ and comment on their orthogonality.
(b) Find $f^{\prime}(z)$.
4. Explain the branch cut structure of the function $f(z)=\sqrt{z^{2}-1}$ (Hint: This is the product of two square root functions). Is the point at infinity a branch point? Why or why not?
5. Find all functions $f(z)$ satisfying all the following properties:
(a) $f(z)$ is analytic on $\{\Im(z)>0\}$,
(b) $f(z)$ is continuous on $\{\Im(z) \geq 0\}$,
(c) $f(z)$ is real on the real axis,
(d) $|f(z)|>|\cos (z)|$ on $\{\Im(z)>0\}$.
6. Find the real and imaginary parts of the number $(1+i)^{\pi}$.
7. Compute the integral $\int_{\gamma} \bar{z} d z$, where:
(a) γ is the contour from $z=0$ to $z=1$ to $z=1+i$.
(b) γ is the unit circle (with center 0 and radius $R=1$). Hint: Use polar coordinates to parametrize γ.

Is the above integral path independent? Why or why not?

