Math 360 Spring 2015 Midterm Exam

March 2015

Honor Pledge: I understand that it is a violation of the JMU honor code to give or receive unauthorized aid on this exam. Furthermore, I understand that I am obligated to report any violation of the honor code by other students that I may become aware of, and that my failure to do so is itself a violation. No phones, or other electronic devices, other than a calculator, may be accessed during this test. Doing so will be considered a violation of the honor code.

Name: _____

Signature: _____

1 Solve the following to the best of your knowledge

1. Solve the equation $z^4 = -16$, and plot the roots in the complex plane.

- 2. (a) What is the image of the upper half plane under the transformation $f(z) = z^3$? Is this transformation one-to-one? Discuss and use graphs and polar coordinates if necessary.
 - (b) Explain why the function e^z is periodic, and discuss the image of the complex plane under the exponential transformation.

3. (a) Find the harmonic conjugate v(x, y) of the function u(x, y) = y² - x² in the complex plane. Deduce the analytic function f(z) = u + iv in terms of z. Plot the level sets u(x, y) = c_i and v(x, y) = c_j and comment on their orthogonality.
(b) Find f'(z).

4.	Explain the branch cut structure of t	he function $f(z) = \sqrt{z^2} - $	1 (Hint: This is the product
	of two square root functions). Is the	point at infinity a branch	point? Why or why not?

- 5. Find all functions f(z) satisfying all the following properties:
 - (a) f(z) is analytic on $\{\Im(z) > 0\}$,
 - (b) f(z) is continuous on $\{\Im(z) \ge 0\}$,
 - (c) f(z) is real on the real axis,
 - $({\rm d}) \ |f(z)| > |\cos(z)| \ {\rm on} \ \{\Im(z) > 0\}.$

6. Find the real and imaginary parts of the number $(1+i)^{\pi}$.

- 7. Compute the integral $\int_{\gamma} \bar{z} dz$, where:
 - (a) γ is the contour from z = 0 to z = 1 to z = 1 + i.
 - (b) γ is the unit circle (with center 0 and radius R = 1). Hint: Use polar coordinates to parametrize γ .

Is the above integral path independent? Why or why not?