Week Highlights

- 1. The difference between real analysis and complex analysis.
- 2. Real smooth function (C^{∞}) vs real analytic function.
- 3. The strength of differentiability (on an open neighborhood of z_0) for a complex function: (implies both smoothness and analyticity).
- 4. The easiness and beauty of complex analytic functions (do you already know some properties? Uniquely determined analytic functions, *etc.*).
- 5. The complex plane (Argand plane) $(\mathbb{C}, +, \times)$, complex numbers (z = x + iy), their conjugates $(\bar{z} = x iy)$, moduli $(|z| = \sqrt{x^2 + y^2})$, and polar form $(z = |z|e^{i \arg(z)} = re^{i\theta})$. (There is no order on $\mathbb{C}!$)
- 6. Multivalued arg z and single valued Principal Argument function $Arg : \mathbb{C} \to (-\pi, \pi]$ (discontinuous along the negative real axis, because of a jump of value 2π overthere.)
- 7. Similarities and *differences* between \mathbb{C} and \mathbb{R}^2 .
- 8. Formulas:
 - (a) Euler's Formula: $e^{i\theta} = \cos\theta + i\sin\theta$.
 - (b) De Moivre's formula: $e^{in\theta} = (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$.

9. Inequalities:

- (a) $\Re(z) \le |\Re(z)| \le |z|$.
- (b) $\Im(z) \le |\Im(z)| \le |z|$.
- (c) $|z_1 \pm z_2| \le |z_1| \pm |z_2|$.
- (d) $|z_1 \pm z_2| \ge ||z_1| |z_2||.$

Reading assignment: Read Chapter 1 from the book. Problem Set Hand the following problems.

- 1. List all the differences that you know between complex analysis and real analysis.
- 2. List all the similarities and differences that you know between \mathbb{C} and \mathbb{R}^2 .
- 3. What is the difference between a smooth (C^{∞}) function and an analytic function:
- (a) in \mathbb{R} ?
- (b) in \mathbb{C} ?

(Note that the answer of number 3 is included in number 1, but you can elaborate more here.)