Math 360 Complex Variables Weeks 13- 14 Worksheet

Hala A.H. Shehadeh

1 Weeks 13 and 14 Highlights

1.1 Residue Calculus

Here we deal integrals where the integrand has isolated singular points. Each isolated singular point contributes to the integral: a term proportional to the residue of the singularity. This is very useful to evaluate definite integrals of various types.
Cauchy's residue theorem: Let $f(z)$ be analytic inside and on a simple closed contour C, except for a finite number of isolated singular points $z_{1}, z_{2}, \ldots, z_{N}$ located inside C. Then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{n=1}^{N} \operatorname{Res}\left(f(z), z_{n}\right) .
$$

How do we calculate the residues?

1. Recall that the coefficient c_{-1} in the Laurent series expansion of $f(z)$ about the point $z=z_{n}$ is the residue of $f(z)$. In case the singularity is essential, then computing the Laurant expansion is the only general method to evaluate the residue.
2. If the singularity is a pole of order m, then $f(z)=\frac{\phi(z)}{\left(z-z_{n}\right)^{m}}$, where $\phi(z)$ is analytic in the neighborhood of z_{n}, and $\phi\left(z_{n}\right) \neq 0$. Then the residue $c_{-1}=\operatorname{Res}\left(f(z), z_{n}\right)$ is equal to $\left.\frac{1}{(m-1)!} \frac{d^{m-1} \phi(z)}{d z^{m-1}}\right|_{z=z_{n}}=$ $\left.\frac{1}{(m-1)!} \frac{d^{m-1}\left(z-z_{n}\right)^{m} f(z)}{d z^{m-1}}\right|_{z=z_{n}}$.
3. If $f(z)=\frac{N(z)}{D(z)}$ where both $N(z)$ and $D(z)$ are analytic in a neighborhood of $z=z_{n}$, and if $D(z)$ has a zero of order 1 at $z=z_{n}$, then $c_{-1}=\frac{N\left(z_{n}\right)}{D^{\prime}\left(z_{n}\right)}$.

1.2 Computing integrals of complex functions

So far, we have 7 methods to evaluate integrals of complex functions:

1. Cauchy's theorem: if the function is analytic in a simply connected domain $\oint_{C} f(z) d z=0$.
2. Parametrize the contour C, then $\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$.
3. Fundamental theorem of calculus: If you already know an antiderivative of the function.
4. Cauchy's integral formula (g is analytic and D is simply connected): $\oint_{C} \frac{g(\xi) d \xi}{\xi-z_{0}}=2 \pi i g\left(z_{0}\right)$
5. Generalized Cauchy's integral formula (g is analytic and D is simply connected): $\oint_{C} \frac{g(\xi) d \xi}{\left(\xi-z_{0}\right)^{n+1}}=\frac{2 \pi i}{n!} g^{(n)}\left(z_{0}\right)$.
6. $\oint_{C} \frac{d z}{z-z_{0}}=2 \pi i$ if z_{0} is in the interior of C, and zero otherwise. (C is a positively oriented loop in simply connected D.)
7. Cauchy's residue theorem (which is an extension of Cauchy's theorem to analytic functions with a finite number of isolated singular points): $\oint_{C} f(z) d z=2 \pi i \sum_{n=1}^{N} \operatorname{Res}\left(f(z), z_{n}\right)$.

1.3 Applications of Residues: Evaluation of certain types of integrals

1. Improper real integrals of the form $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x, q(z) \neq 0$ on the real line, and the degree of the denominator is at least 2 degrees more than that of the numerator (helps for convergence of the integral over the contour C_{R} as $\left.R \rightarrow \infty\right)$.
2. Improper real integrals of the form $\int_{-\infty}^{\infty} f(x) \sin (a x) d x$ or $\int_{-\infty}^{\infty} f(x) \cos (a x) d x$.

Jordan's Lemma (estimates): Suppose that: $f(z)$ is analytic at all points in the upper half plane that are exterior to a circle $|z|=R_{0} ; C_{R}$ is a semicircle where $R>R_{0}$; for all points z on C_{R} there is a positive constant M_{R} such that $|f(z)| \leq M_{R}$ and $\lim _{R \rightarrow \infty} M_{R}=0$, then for every positive constant a, $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) e^{i a z} d z=0$. (The proof is based on Jordan's inequality $\int_{0}^{\pi} e^{-R \sin \theta} d \theta<\pi / R$ where $R>0$.)
4. Indented paths: (useful for example, for $\int_{-\infty}^{\infty} \frac{\sin (a x)}{x} d x$)

Theorem (estimates): Consider an integral on a small circular arc with radius ϵ, center $z=z_{0}$, and with the arc subtending an angle ϕ. There are two important cases:
(a) along the contour $C_{\epsilon},\left(z-z_{0}\right) f(z) \rightarrow 0$ uniformly as $\epsilon \rightarrow 0$, then $\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) d z=0$
(b) $\mathrm{f}(\mathrm{z})$ has a simple pole at $z=z_{0}$ with residue $\operatorname{Res}\left(f(z), z_{0}\right)=c_{-1}$, then $\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) d z=i \phi c_{-1}$, where the integration is carried out in the counterclockwise direction.
5. Indentation around a branch point to avoid a branch point as well as isolated singularities. (Note that a branch point is not an isolated singularity). Useful for integrals such as $\int_{0}^{\infty} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} d x$ where a is a real number $-1<a<3$.
6. Integration along a branch cut (useful for integrals such as $\int_{0}^{\infty} \frac{\log ^{2}(x)}{x^{2}+1} d x, \int_{0}^{\infty} \frac{x^{a}}{x+1} d x$ where $0<a<1, \int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x$, etc..)
Theorem (estimates): This may be useful for providing estimates for cases where Jordan's lemma is not applicable: If on a circular arc of radius R and center $z=0$ we have $z f(z) \rightarrow 0$ uniformly as $R \rightarrow \infty$, then $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0$.
7. Integrals of the form $\int_{0}^{2 \pi} g(\sin \theta, \cos \theta) d \theta$.

1.4 Residue at infinity

2 Reading assignment

Read chapter 6 (up to page 237) and chapter 7 (up to page 286) from the book.

3 Problem Set

Problems from the book:

1. Number 5 page 238.
2. Number 6 page 238.
3. Number 5 page 265.
4. Number 9 page 265.
5. Number 4 page 273.
6. Number 12 page 273.
7. Number 2 page 282.
8. Number 2 page 287.
9. Number 5 page 287.

Outside problems:
10. Use contour integration and residues to compute the integral $I=\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x$.
11. (a) Show that on the lines $\Re(z)=N+\frac{1}{2}$, where N is a positive integer, the functions $\frac{\cos (\pi z)}{\sin (\pi z)}$ and $\frac{1}{\sin (\pi z)}$ are uniformly bounded.
(b) Evaluate $\frac{1}{2 \pi i} \int_{C_{N}} \frac{\cos (\pi z)}{\sin (\pi z)\left(z^{2}+1\right)} d z$ and $\frac{1}{2 \pi i} \int_{C_{N}} \frac{1}{\sin (\pi z)\left(z^{2}+1\right)} d z$, where C_{N} is the square with vertices $\pm\left(N+\frac{1}{2}\right) \pm$ $i\left(N+\frac{1}{2}\right)$. The contour is traversed in the counterclockwise direction.
(c) Sum the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$.

