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1 Week 15 Highlights

1.1 Isolated singular points
A singular point z0 of f(z) is isolated if f(z) is analytic in a neighborhood of z0 but not at z0. In the neighborhood
of a singular point, we proved that f(z) has a Laurent series representation

f(z) =

∞∑
n=−∞

cn(z − z0)n = . . .+
c−2

(z − z0)2
+

c−1

(z − z0)
+

∞∑
n=0

cn(z − z0)n.

The principal part of the Laurent series (part with negative n’s) determines the types of the isolated singularity.

1. Removable singularity
The Laurent series near a removable singularity has no principal part! Example: z = 0 is a removable
singularity for f(z) = sin z

z
= 1 − z2

3!
+ z4

5!
− . . .. Note that the function is not defined at z = 0, but its

Laurent series is, so we can redefine the function to be 1 at z = 0, and hence we are able to ‘remove’ the
singularity.

• The residue Res(f(z), z0) = c−1 at a removable singular point is always zero.

• Behavior near removable singularity theorem: If z0 is a removable singularity of f(z) then f(z) is
bounded and analytic in some deleted neighborhood of z0.

• Behavior near removable singularity Riemann’s theorem: Suppose that f(z) is bounded and analytic
in some deleted neighborhood 0 < |z− z0| < ε of z0. If f is not analytic at z0, then it has a removable
singularity there.

2. Pole
The principal part of the Laurent series only has finitely many nonzero cn’s, and the order of the pole is
m = |n| where n is the negative integer largest in magnitude. A pole of order one is called a simple pole.
Example: The function 1

z2(1−z) = 1
z2

(1 + z+ z2 + z3 + . . .) = 1
z2

+ 1
z

+ 1 + z+ z2 + . . . has a pole of order 2
at z = 0. Another way to identify poles: Suppose p(z) and q(z) are analytic at the point z0, p(z0) 6= 0, and
q(z) has a zero of order m at z0, then p(z)

q(z)
has a pole of order m at z0 (so the above function 1

z2(1−z) has a
pole of order 2 at z = 0 and a simple pole at z = 1).

• Behavior near pole, theorem: If z0 is a pole of a function f(z), then limz→z0 f(z) = ∞. (Note that
this is different than the case where z0 is a removable singularity, since f(z) is bounded there, and
this limit is not infinite.)

3. Essential singularity
An essential singularity has a “full” Laurent series, meaning the principal part has infinitely many nonzero
cn’s. Example e1/z = 1 + 1

z
+ 1

2!
1
z2

+ . . . has an essential singularity at z = 0.

• Behavior near essential singularity, Picard’s theorem : In each neighborhood of an essential sin-
gularity, a function assumes every finite value, with one possible exception, an infinite number of
times.

• Behavior near essential singularity, Casorati-Weierstrass theorem : If f(z) has an essential singu-
larity at z = z0, then for any complex number w, f(z) becomes arbitrary close to w in a neighborhood
of z0. That is, given w, and any ε > 0, δ > 0, there is a z such that |f(z) − w| < ε whenever
0 < |z − z0| < δ.

1.2 Non-isolated singular points
For example, a branch point is a non-isolated singular point. Another example is a cluster singular point, which
happens when an infinite sequence of isolated singular points cluster around a point (for example, z = 0 is a cluster
singular point for f(z) = tan(1/z)). There is no valid Laurent series representation in the neighborhood of a cluster
singular point.
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1.3 Meromorphic function
f(z) is meromorphic in a domain D is it is analytic throughout D except for poles.

1.4 Winding number
1
2π

∆Carg(f(z)) represents the number of times the image γ of a simple closed contour C in the z-plane winds
around the origin in the w-plane. It is easy to see that the winding number is an integer (it could be zero if γ
winds zero times around the origin). Here, f(z) is meromorphic in the domain interior to positively oriented C,
and analytic and nonzero on C (so γ does not pass through the origin).

1.5 Argument principle
For a simple closed contour C and a meromorphic function f(z) inside C, the winding number is simply the
difference Z − P between the number of zeros of f(z) and its poles inside C, counting multiplicities for both the
zeros and the poles. (The proof uses the fact that

1

2πi

∮
C

f ′(z)

f(z)
dz = winding number,

(this happens when we parametrize f(z) = ρ(t)eiφ(t)). On the other hand, using Cauchy’s residue theorem, we can
show that the above integral is in turn equal to Z −P .) Note that f(z) has to be meromorphic in C, analytic and
nonzero on C.

1.6 Rouche’s theorem
This is a consequence of the argument principle, and is useful for locating regions of the complex plane where a
given analytic function has zeros. It mainly says that inside a simple closed contour, an analytic function has as
many zeros as its ‘dominant’ part. So we can only count the zeros of the dominant part of the function, instead of
dealing with the whole function, which is usually more complicated.
Rouche’s theorem: Let f(z) and g(z) be analytic inside and on a simple closed contour C, and let |f(z)| > |g(z)|
at each point on C, then f(z) and f(z) + g(z) have the same number of zeros, counting multiplicities, inside C.
(The proof follows from applying the argument principle to the function 1 + g(z)

f(z)
, which has winding number zero

because of the hypothesis.)

2 Reading assignment
Read the rest of chapters 6 and 7 from the book.

3 Problem Set
Hand the following problems.

3.1 Problems from the book
1. Page 293 number 2.
2. Page 294 number 7.
3. Page 294 number 8.

3.2 Problems from outside the book
4. Discuss the location and the type of singularities

(if it is a pole, give the order) of the following func-
tions. State whether the singularity is isolated or
not:

(a) f(z) = ez
2
−1

z2
.

(b) g(z) = (z−1)2

z(z+1)3
.

(c) h(z) = z+1
z sin(z)

.

5. Show that the function h(z) = ez − 4z − 1 has ex-
actly one root inside the unit circle C : |z| = 1, and
that the function g(z) = ez − 4z2 − 1 has exactly
2 roots inside the unit circle.

6. Let f(z) = 2z4 + 3z2− 2z+ 1 + 9
z
. Show that f(z)

has 5 zeros in the annulus 1 < |z| < 2.
7. Prove that if A > 1 and n is a positive integer,

the equation zneA−z = 1 has exactly n roots in-
side the unit circle (Hint: rewrite the equation as
zn − eze−A = 0 and apply Rouche’s theorem).
Show also that for n = 1, this root is real and pos-
itive (Hint: for h(z) = zeA−z − 1, compute h(0)
and h(1), then use the continuity of h).
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