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1 Week 16 Highlights

1.1 Conformal Mapping
Theorem (Conformal Mapping): A map w = f(z) is conformal (angle preserving) at z0 iff f is analytic at z0
and f ′(z0) 6= 0. In fact, if f is conformal at z0, then it is conformal at each point in some neighborhood of z0.
A map f is conformal in a domain D iff it is conformal at each point in D.
Conformal mapping provides a classical method for solving problems in continuum mechanics, electrostatics, and
other fields involving two-dimensional Laplace (φxx + φyy = 0) and Poisson (φxx + φyy = g) equations.
A Boundary Value Problem looks like

φxx + φyy = 0 in D

φ = φ0 (Dirichlet problem) on ∂D or
∂φ

∂n
= 0 (Neumann problem) on ∂D.

We are usually interested in finding solutions of these problems in a certain domain (than has an ugly shape) with
certain boundary conditions (prescribed values of the unknown function φ and/or its derivatives on some portions
of the boundary of the ugly domain).
These problems are greatly simplified if we can transform the ugly domain into a domain which is easy to deal
with, like: the upper half plane, the unit disk, the horizontal strip 0 < y < π, or the first quadrant. Since we are
interested in boundary value problems, we also need to transform the boundary conditions as well! The following
two theorems allow us to do so.

1.2 Transforming Boundary Value Problems
1. Transforming harmonic functions The heart of this theorem: the composition of a harmonic function

with an analytic function is harmonic! Statement: If f(z) = w = u(x, y) + iv(x, y) maps a domain Dz in
the z-plane onto a domain Dw in the w-plane, and the function h(u, v) is harmonic in Dw (satisfies Laplace
equation), then the function H(x, y) = h ◦ f(x, y) = h(u(x, y), v(x, y)) is harmonic in Dz.
Note that f only needs to be analytic. So using this theorem, we can map the difficult domain to the easy
domain using f , then find a harmonic function h(u, v) in the easy domain (note that the real and imaginary
parts of analytic functions provide an unlimited supply of harmonic functions), then finally find the real and
imaginary parts u(x, y) and v(x, y) of f , and plug them back into h. This given us the harmonic function
in the difficult domain.
The following theorem guarantees that the Dirichlet and Neumann boundary conditions remain intact when
we conformally map the difficult domain to the easy one:

2. Transforming Dirichlet and Neumann boundary conditions Let f(z) = w = u(x, y) + iv(x, y) be
conformal at each point of a smooth arc C and that γ is the image of C under f . Let h(u, v) be a function that
satisfies either the Dirichlet condition h = h0 (a real constant) or the Neumann condition ∂h

∂n
= ∇h.n = 0

(directional derivative of h normal to γ.) Then the function H(x, y) = h ◦ f(x, y) = h(u(x, y), v(x, y))
satisfies exactly the same conditions (H = h0 or ∂H

∂N
= 0) on C.

1.3 The Riemann Mapping Theorem
A corollary of the Riemann mapping theorem (below) guarantees that any two simply connected domains which
are not the whole complex plane can be mapped conformally onto each other! We need this in order to be able
to map the ugly domains D above conformally onto the good domains where we can find harmonic functions with
the given boundary conditions.
Riemann Mapping Theorem: Let z0 be a point in a simply connected domain D which is not all of the complex
plane. Then there is a unique analytic function w = f(z) mapping D one-to-one onto the open unit disk {|w| < 1}
such that f(z0) = 0 (so z0 is mapped onto the origin) and f ′(z0) is real and positive.

1



1.4 Table of Transformations

We obviously need a glossary of transformations that come in handy for transforming the two
dimensional domains that appear in our boundary value problems. Of course, these maps are
guaranteed to exist by the Riemann mapping theorem (however, the proof of the Riemann mapping
theorem is nonconstructive, so the proof itself does not tell us how to find these mappings). Check
Appendix 2 in the back of the book.

1.5 The Schwarz-Christoffel Transformation

This is an extremely useful transformation that maps the x-axis and the upper half plane in the
z-plane onto a given simple closed polygon and its interior in the w-plane. As we said before, this
is useful because solving Laplace equation (to get harmonic functions) in the upper half plane
with prescribed boundary conditions is a significantly easier problem than solving it in a polygon.
(For details, see chapter 11 in the book.)

2 Reading assignment

Read chapters 9 and 8 (in this order, 9 then 8) from the book (for applications, chapter 10 is a
great read). Check out Appendix 2 for the table of transformations.

3 Problem Set

One of these problems will be on the final exam.

1. Find the electrostatic potential V in the
space enclosed by the half circle x2 + y2 =
1, y ≥ 0 and the line y = 0 when V = 0 on
the circular boundary, and V = 1 on the
line segment [−1, 1].

2. (a) Find a map w = f(z) that maps the
right half plane <(z) > 0 into the inte-
rior of the unit circle |w| < 1, so that
the points z = 0, i,∞ are mapped to
the points w = −1, i, 1 respectively.

(b) Use the result to find a harmonic func-
tion φ(r, θ) as a function of polar coor-

dinates (r, θ), defined within the unit
disk, and taking the values 1 on the
upper hand and −1 on the lower half
of the unit circle |w| = 1 (these are
the boundary values). (Hint: It is
probably easier to map the horizon-
tal strip 0 ≤ y ≤ π to the right half
plane first.)

3. The famous Joukowski airfoil (think of
the effect of the transformation w = z + 1

z
on a circle): Number 15 page 391 from the
book.
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