
Math 360 Complex Variables (Spring 2015) Weeks 4 and 5
Worksheet

Hala A.H. Shehadeh

1 Weeks 4 and 5 Highlights

1.1 Composition
of analytic functions is analytic, and (f ◦ g)′(z) = f ′(g(z))g′(z). (Here, g is analytic on an open subset U
of C, and f is analytic on an open subset containing g(U).) Note that since U is open and g is analytic,
then g(U) is also open. This is the open mapping property of analytic functions.

1.2 Elementary functions: More details
In the following, z = x+ iy = |z|ei arg(z) = |z|eiArg(z)+2πik, k = 0,±1,±2, . . ..

1. The complex exponential ez (single-valued, periodic, entire, never zero, assumes all complex
values except zero).

(a) ez = exeiy = ex cos(y) + iex sin(y).

(b) ez is entire and (ez)′ = ez (Cauchy Riemann equations and the derivative in terms of u and
v).

(c) ez1ez2 = ez1+z2 .

(d) ez 6= 0 for any complex number z (since eze−z = e0 = 1).

(e) ez is a periodic function on C with period 2πi (so ez+2kπi = ez, k = 0,±1,±2, . . .). (This is
different than the restriction ex of the exponential to R, which is one-to-one, so it’s invertible
with inverse ln(x).) This periodicity will imply that the complex logarithm will not be single-
valued! We can divide up the complex plane into horizontal strips of height 2π each, so that
the complex exponential is one-to-one function on each strip. Note that each strip gets mapped
onto the whole complex plane minus zero under ez.

(f) If w is a nonzero complex number, then w = ez for some z (so ez assumes all values in C\{0}).
(g) All the above properties, including the definition (a), can also be proved if we define the

exponential using the series ez =
∑∞
n=0

zn

n! .

2. Complex trigonometric functions

(a) cos(z) = eiz+e−iz

2 and sin(z) = eiz−e−iz

2i .

(b) cos(z) and sin(z) are entire, and, cos′(z) = − sin(z) and sin′(z) = cos(z).

(c) Many of the properties of the real sin(x) and cos(x) functions carry over to their complex
extensions, for example cos2(z) + sin2(z) = 1, however, the complex sine and cosine functions
are not bounded (unlike real sine and cosine which are bounded by 1)! The unboundedness is
due to having the functions sinh and cosh in their real and imaginary parts:

sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y),

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y).

In fact, if an entire function is bounded, it must be a constant! This is Liouville’s theorem
which we will prove later. So complex sine and cosine couldn’t be entire and bounded.

(d) Define other trigonometric functions like tan(z) (note that tan z has poles at odd multiples of
π/2), etc. in the usual way, and make yourself familiar with their properties.
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3. Complex hyperbolic functions

(a) cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 (entire, find their derivatives).

(b) These, unlike their real restrictions, are not independent from the complex trigonometric func-
tions: sinh(iz) = i sin(z) and cosh(iz) = cos(z).

(c) There are many other properties (periodic, with period 2πi), which you should make yourself
familiar with.

4. The complex logarithm log(z) (multi-valued because it’s the inverse of periodic ez, defined for
all complex numbers except zero, analytic only after we specify a branch, introduce branch cuts).

(a) log(z) = w ⇐⇒ z = ew (recall that ew+2kπi = ew).

(b) log(z) = ln(|z|) + i arg(z) (but arg(z) is multivalued, so is log(z)).

(c) Contrary to real valued ln(x) on R, we can take log(−1) = ln |−1|+i arg(−1) = i(2k+1)π, k =
0,±1,±2, . . . .

(d) Branches, branch cuts, and branch points: Making log(z) single-valued comes at a price- we
lose continuity over the whole complex plane. To do this, we specify a branch Logτ (z) of log(z),
by restricting the argument τ ≤ Argτ < τ + 2π. Log is discontinuous across the branch cut
θ = τ . (So for τ = −π, the principal branch Log(z) is discontinuous along the negative real
axis.). A point common to all branch cuts is called a branch point (In fact, a point is a branch
point if the multivalued function is discontinuous upon traveling a short circuit around this
point.). So the origin is a branch point for log(z) (the point at infinity z =∞ is also a branch
point).

(e) Logτ (z) is analytic over C \ {the branch cut θ = τ and the origin} and its derivative is
Logτ (z)′ =

1
z .

(f) There is usually no benefit in choosing one branch of the log over another, but one should be
consistent the moment a choice is made. Some choices may be more convenient than other
for specific applications, for example, to compute the derivative of log(z) at the point −1, the
principal branch would not be a valid choice, since it is not analytic there, but any other valid
branch would be fine, and all valid choices would give the same result.

(g) Algebraic identities like log(z1z2) = log(z1) + log(z2) and log(z1/z2) = log(z1) − log(z2) still
hold up to integer multiples of 2πi, since log(z) is multivalued. (Always check whether an
identity is still valid.)

5. Complex powers zα (α is a real or a complex number) (inherits multi-valued property from the
complex logarithm, so need to specify branch for analyticity).

(a) zα = eα log(z) = eα(ln |z|+i arg(z)) (composition of two functions which we already defined).
(Note that if α is an integer, this function is single valued; if α is a rational number p/q, then
this function has finitely many values; and if α is an irrational number or a complex number
(with nonzero imaginary part), then this function has infinitely many values!)

(b) Every branch of log(z) gives rise to a branch of zα. Since the exponential is entire, zα is
is analytic in the domain where the specified branch of log(z) is analytic, and its derivative
(zα)′ = αzα−1.

(c) Algebraic identities: some still hold as in the real case, like zαzβ = zα+β , others don’t, for
example zα1 zα2 6= (z1z2)

α for nonzero complex z’s and α!

(d) zz is an analytic function whenever a branch of the logarithm is chosen and analytic, and
(zz)′ = zz(Logτ (z) + 1).
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6. Inverse trigonometric functions (inherits multi-valued property from the complex log-
arithm, so need to specify branch for analyticity).

(a) Define in terms of logarithm: sin−1(z) = w ⇐⇒ z = sin(w) = eiw−e−iw

2i , then solving a
quadratic equation for eiw, we get

sin−1(z) = −i log(iz + (1− z2)1/2).

This is a multivalued function with infinitely many values at each point z. Note that
the function iz+(1−z2)1/2 has two branches, and the log function has infinitely many
branches, hence sin−1(z) is said to be doubly infinite.

(b) Find similar expressions for cos−1(z), tan−1(z), sinh−1(z), cosh−1(z), and tanh−1(z).

(c) When specific branches of the square root and the logarithmic functions are chosen,
all these functions become single valued and analytic since they are then composi-
tions of analytic functions. The derivatives are readily obtained from their logarithmic
expressions, for example sin−1(z)′ = 1

(1−z2)1/2 , tan
−1(z)′ = 1

1+z2
, etc.

7. Food for thought: Think about the branch structure for more complicated functions like√
(z − a)(z − b).

1.3 Student Presentation: The Complex Infinity.

2 Reading assignment

Read Chapter 3 from the book.

3 Problem Set

Hand the following problems.

1. Find the real and imaginary parts of ii,
tan(πi), log(1), log(−1) and log(i).

2. Find all possible values of sin−1(2).

3. Find all possible values of i
√
3.

4. Prove that (tan−1(z))′ = 1
1+z2

(find a log-
arithmic expression and specify a branch
where this function is analytic first).

5. Determine all complex numbers z such that
iz has at most a finite number of values.

6. Use Euler’s formula for the exponential and
the well-known series expansions of the real
functions ex, sin(y), and cos(y) to show
that

ez =

∞∑
n=0

zn

n!
.

(Hint: Use (x+iy)n =
∑n

j=0
n!

j!(n−j)!x
j(iy)n−j .)
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