Hala A.H. Shehadeh

1 Week 6 Highlights

1.1 Unique Determination

A complex analytic function is *uniquely* determined by its values on a subdomain! (This is again different than the real case.)

- 1. If f(z) is analytic throughout a domain D, and f(z) = 0 on a subdomain of D or on a line segment in D, then f(z) is identically zero throughout D. Hence the zeros of a nontrivial analytic function are isolated.
- 2. An analytic function f(z) is uniquely determined by its values on a subdomain or a line segment contained in D (if g(z) is analytic and agrees with f(z) on a subdomain or a line segment in D, let h(z) = f(z) - g(z)and use (1) above to deduce h = 0 everywhere on D). The fact that a 'global' analytic function can be deduced from such few information illustrates the power of complex analyticity (differentiability).

1.2 Analytic Continuation

Unique determination helps us study the questions: Can we extend the domain of an analytic function (analytic continuation) to a larger domain? What is the biggest possible domain of definition of a given analytic function (Riemann surfaces)?

- 1. $f_1(z)$ is an analytic continuation of f(z) to a larger domain D_1 containing the domain D of f if $f_1(z)$ is analytic on D_1 and agrees with f on D.
- 2. An analytic continuation of an analytic function to a larger domain D_1 may or may not exist.
- 3. Whenever an analytic continuation exists, it is unique. (Careful though, if f_1 is the analytic continuation of f from D to D_1 , f_2 is the analytic continuation of f_1 from D_1 to D_2 , and D_2 happens to intersect D, then f_2 and f need not agree on that intersection.)
- 4. Sometimes, we have a formula for a function that is valid in a limited region of space (like series), and we ask whether we could find a representation (a closed form, series form, other forms) that is valid in a larger domain. This process of extending the domain of definition of an analytic function is analytic continuation. For example, the function $f(z) = \sum_{n=0}^{\infty} z^n$ which is analytic on the open unit disk $D = \{z : |z| < 1\}$, can be continued analytically to the whole complex plane except the point 1 ($\mathbb{C} \setminus \{1\}$) using the function $g(z) = \frac{1-z}{1-z}$, (which is clearly analytic over $\mathbb{C} \setminus \{1\}$, and agrees with f on D!).
- 5. There are some types of singularities that are so serious that they prevent analytic continuation of the function in question. Such singularities are called *natural barriers* (see for example problem 5 in this sheet). These are sometimes found in solutions of certain nonlinear differential equations arising in physical applications.

1.3 Reflection Principle (Schwarz)

This provides a way to extend the domain (analytic continuation) of a function which is analytic on the upper half plane and whose domain has a segment of the x-axis, to the entire plane by reflection (define $F(\bar{z}) = \overline{f(z)}$). The only requirement is that f is real when z = x is real.

- 1. Reflection principle: If an analytic function has a symmetric domain about the x-axis, and that domain contains the x-axis, and the function is real when z = x is real, then $f(\overline{z}) = \overline{f(z)}$.
- 2. Hence, if an analytic function maps the real line to the real line, then it must preserve symmetries with respect to the real line.
- 3. In particular, if an analytic function on the upper half plane maps the real axis to the real axis, then it can be continued analytically to the entire plane by defining $F(\bar{z}) = \overline{f(z)}$.
- 4. This can be generalized to preserving symmetries with respect to circles.

1.4 Student Presentation: Riemann Surfaces

2 Reading assignment

Read Sections 28 and 29 (pages 80-85) from the book.

3 Problem Set

Hand the following problems.

- 1. List all the properties that you know about analytic functions so far.
- 2. Find all functions f(z) satisfying all the following properties:
 - (a) f(z) is analytic on $\{\Im(z) > 0\}$,
 - (b) f(z) is continuous on $\{\Im(z) \ge 0\}$,
 - (c) f(z) is real on the real axis,
 - (d) $|f(z)| > |\sin(z)|$ on $\{\Im(z) > 0\}$.
- 3. Find a function f(z) that satisfies all the following properties:
 - (a) f(z) is analytic on $\{\Im(z) > 0\}$,

- (b) f(z) is continuous on $\{\Im(z) \ge 0\}$ except at the origin,
- (c) f(z) is real on the real axis (except at zero it is undefined),
- (d) $|f(z)| \leq \frac{c}{|z|^3}$ when $\{\Im(z) > 0\}$,
- (e) f(i) = 4i.
- 4. Use analytic continuation to find the value of the function $\sum_{n=1}^{\infty} \frac{z^n}{n}$ at z = 3i.
- 5. Consider the function defined by the power series $f(z) = \sum_{n=1}^{\infty} z^{n!}$. For what values of z does it converge? Is there an analytic continuation beyond the circle of convergence of the power series?