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1 Weeks 7 and 8 Highlights

1.1 Complex Integration
Just like in Calculus of real variables, we studied limits, continuity, differentiability of functions, and now we study integrabil-
ity. In real Calculus, differentiation and integration are inverse operations to each other (Fundamental Theorem of Calculus).
In complex analysis, this still holds, but we have more: integration and differentiation are equivalent, in the sense that we can
obtain a function’s derivatives by integrating it (with a weight around a contour). This is generalized Cauchy’s integral
formula (given below).

1.1.1 Integral of a complex function of a real variable
∫ b
a f(t)dt∫ b

a
f(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt.

1.1.2 Contour Integrals
∫ z1
z0

f(z)dz

Here, we need to consider a specific path Γ between z0 and z1, since there are many ways to connect these points in the
complex plane. Then? Parametrize Γ by z(t) = x(t) + iy(t) with t ∈ [t0, t1], where z(t0) = z0, and z(t1) = z1. Now given
that Γ is a smooth curve (has nonzero continuous derivative on [t1, t2]), and that f(z) is continuous on Γ, then

∫
Γ
f(z)dz =

∫ t1

t0

f(z(t))z′(t)dt.

1. The above integral is independent of the parametrization of the curve Γ. So we can always choose t0 = 0 and t1 = 1
and we can parametrize in t ∈ [0, 1].

2. The parametrization gives the curve Γ a natural direction (put an arrow on the direction the curve is traversed as t
increases from 0 to 1), so −Γ will be the directed curve with the opposite direction, and

∫
−Γ f(z)dz = −

∫
Γ f(z)dz.

3. We can construct paths between z0 and z1 which are not smooth but which are piecewise smooth. Such paths are
called contours, and if f(z) is continuous on the contour Γ which is made of n finitely many smooth curves Γk, then
the contour integral of f along Γ is ∫

Γ
f(z)dz =

n∑
k=1

∫
Γk

f(z)dz.

4. Terminology and notation: A contour is closed if both its endpoints coincide. It is simple if it has no self-
intersections. A closed simple contour is a loop. A domain is an open subset of the complex plane which is
(path) connected, that is, every pair of points in the domain can be connected by a contour. A domain D is simply
connected if the interior of every loop in D lies fully in D (for example, a punctured disk or an annulus are not
simply connected). If Γ is a closed contour in a domain, we denote the integral along Γ by

∮
Γ, to emphasize the fact

that the contour is closed.

5. Fundamental theorem of calculus for complex functions, contour integrals: If a complex function f is continuous
on a domainD, and has an antiderivative F inD (F ′(z) = f(z) so F is analytic inD), Γ is any contour inD connecting
z0 to z1, then

∫
Γ f(z)dz = F (z1)−F (z0). (So two things happen for a function that has an anti-derivative: Its integral

does not depend on the path that we take from z0 to z1, only on the values of f at z0 and z1; if we integrate it along
a closed contour, its integral will vanish).

6. Independence of path: Given f continuous on a domain D, the following three statements are equivalent :

(a) f has an antiderivative F in D (so there is an F such that F ′(z) = f(z)).

(b)
∮
Γ f(z)dz vanishes for all closed contours Γ in D.

(c) The contour integrals
∫
Γ f(z)dz are independent of the path.

Cauchy’s integral theorem below tells us that if f is analytic, and our domain is simply connected, then the integral
of f along any closed curve is zero (equivalently, f has an antiderivative on D)! Note that for independence of path,
f need not be analytic, but must have an anti-derivative.
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1.2 Cauchy’s Integral Theorem
This is yet another powerful property of analytic functions, that has many important consequences. Statement : If D is a
simply connected domain and f is analytic on D, then for any loop Γ,

∮
Γ f(z)dz = 0.

Then from path independence above, we can conclude that an analytic function in a simply connected domain has an
antiderivative, which is also analytic in D.

• Cauchy’s integral theorem has this important consequence for computing contour integrals: we can deform the
contours into simpler ones, and still get the same answer, as long as in doing so, we never cross a point at which f
is not analytic. For example, instead of integrating

∮
Γ

1
z
dz along an ellipse Γ enclosing the origin, we can integrate it

along a circle C (deform the ellipse into a circle), and get the same answer (2πi).

• Using the above contour deformation, we see that for Γ any positively oriented loop in C,∮
Γ

1

z − z0
dz = 2πi,

if z0 lies in the interior of Γ and
∮
Γ

1
z−z0

dz = 0 if z0 lies in the exterior of Γ.

1.3 Cauchy’s Integral Formula
This is powerful because it says that the values of an analytic function inside a simply connected domain (which is two
dimensional) is determined by its values on the boundary (which is one dimensional)! Statement: If f(z) is analytic in a
simply connected domain D, and Γ is a positively oriented loop in D, and z0 is in the interior of Γ, then

f(z0) =
1

2πi

∮
Γ

f(ξ)

ξ − z0
dξ.

1.4 Generalized Cauchy’s Integral Formula
An analytic function is infinitely differentiable, and its derivatives are given by

f (n)(z) =
n!

2πi

∮
Γ

f(ξ)

(ξ − z)n+1
dξ.

Hence, the existence of one derivative of a complex functions implies the existence of infinitely many (not the case for real
functions!). Moreover, taking complex derivatives is equivalent to evaluating integrals (also not the case for real functions).
The above formula can be used to evaluate contour integrals, for example, if Γ is the unit circle,

∫
Γ
ez

z3
= 2πi

2!
(ez)′′ = πi.

1.5 Cauchy’s Estimate
This is an estimate for the derivatives of an analytic function. Let f be analytic in some domain D containing a circle C
({z : |z− z0| = R}) of radius R centered around z0. Suppose also that f is bounded on C, that is |f(z)| < M for all z on the
circle C, then

|f (n)(z0)| ≤
n!M

Rn
.

(Use generalized Cauchy’s formula for the proof.)

1.6 Liouville’s Theorem
This is an immediate consequence of Cauchy’s estimate: A bounded entire function is constant. Recall that the main
entire functions that we have encountered so far are polynomial and exponential functions, and some multiplications and
compositions of these, which are clearly not bounded.
We can use Liouville’s theorem to easily prove the fundamental theorem of algebra: Every non constant polynomial has
at least one zero (more generally, counting multiplicity, a polynomial of degree n has n zeros in C).

1.7 Morera’s Theorem
This is the converse of Cauchy’s integral theorem. If f(z) is continuous in D and all loop integrals of f(z) in D vanish, then
f is analytic! (This is mainly due to the fact that if f is continuous with an antiderivative, then f is analytic, by making use
of generalized Cauchy’s integral formula.)

1.8 Maximum Modulus Principle
Let f be an analytic function which is not constant on a domain D, then |f(z)| has no maximum value in D.
From this it follows that if f is continuous on a closed and bounded region D and is analytic and not constant in the interior
of D, then |f(z)| has a maximum (which is always attained) on the boundary of D. (Compare to the maximum principle for
harmonic functions.) In Problem 3, we prove that |f(z)| also attains its minimum on the boundary of D (given |f(z)| 6= 0).
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2 Reading assignment

Read Chapter 4 from the book.

3 Problem Set

Hand the following problems.

1. Evaluate
∫
C zndz for integer n and some

simple closed contour C that encloses the
origin (consider the cases n 6= −1 and
n = −1 separately) by:

(a) Parametrizing C.
(b) Finding an antiderivative and using

the Fundamental Theorem of Calcu-
lus.

2. Consider the integral I =
∫∞
−∞

dx
x2+1

.

(a) Evaluate the integral using real cal-
culus methods (this one is easy, but
other real integrals will be very dif-
ficult without using complex tech-
niques).

(b) Evaluate the integral by considering∮
C

dz
z2+1

where C is the closed semi-
circle in the upper half plane with
endpoints at (−R, 0) and (R, 0) plus
the x-axis. (Hint: use 1

z2+1
=

−1
2i

(
1
z+i −

1
z−i

)
, and show that the in-

tegral along the open semicircle in the
upper half plane vanishes as R→∞.)

3. Let f be continuous on a closed and
bounded region D, and let it be analytic
and non constant throughout the interior
of D. Assuming that f(z) 6= 0 anywhere in

D, prove that |f(z| has a minimum value
in D which occurs at the boundary of D
and never in the interior. (Hint: Apply the
maximum modulus principle for the func-
tion g(z) = 1/f(z).)

4. Let f(z) be an entire function, and let
M(R) = max|z|=R |f(z)| for R > 0. Sup-
pose that M(2R) < 2NM(R) for all R > 0
and for some integer N . Show that f(z)
is a polynomial of degree not exceeding
N . (Hint: Prove that the Taylor coefficient
f (N+k)(0) = 0 by making use of Cauchy’s
estimate, and sending R to infinity since
the function is entire.)

5. Suppose that f(z) is entire and has n sim-
ple zeros at z1, z2, . . . , zn. Suppose also
that |f(z)| ≤ k|z|m + L for some m, k and
L. What is f(z)? (Hint: Like in problem
4 use Cauchy’s estimate and let R → ∞
since the function is entire.)

6. From the book: page 132 numbers 1(b), 2,
5.

7. From the book: page 170 numbers 1(b),
2(b), 4.

8. From the book: page 177 number 4.

4 Student Presentation: Generating Fractals Using Complex Func-
tions

Explain the methodology and Download Fractint to generate the pictures.

3


