Infinities in Complex Plane

Kirill Korsak and Noah McClelland

Motivation

- The concept of infinity is clear in R since R has order. It is clear when a number is less than or greater than another number.
- In R we can imagine a function that just keeps increasing to arbitrarily large number like $f(x)=x^{\wedge} 2$.
- C does not have order. Is $1+2 i$ greater or less than 2-i?
- What does it mean to be infinite in C .

Norm to the Rescue

- We can define norm for a complex function $\mathrm{f},|\mathrm{f}|$, to impose something on C that we can order. As $|\mathrm{f}|$ grows arbitrarily large you can imagine a circle who's radius grows as $|\mathrm{f}|$ increases.
- Does this mean there are 1 or many infinities in the complex plane?
- A sphere can help us.

Riemann Sphere

- Use a projection called stereographic projection to map points on the sphere onto C
- Where does the North Pole go?
- Only 1 infinity in C (with the Riemann sphere mapping)

Consequences?

- Define the extended complex number. Just C with infinity smashed in.
- $C \infty$ is no longer a field since ∞ has no multiplicative inverse.
- We can define other cool structure though, unlike R the following are defined in C_{∞} :
- $z / 0=\infty$
- $z / \infty=0$
- $\infty / 0=\infty$
- $0 / \infty=0$
$0 / 0$ and ∞ / ∞ are still undefined $*$

Resources

- Brown, J., \& Churchill, R. (2013). Complex Variables and Applications (9 edition). New York, NY: McGraw-Hill Science/Engineering/Math.
- http://en.wikipedia.org/wiki/Riemann sphere
- http://plus.maths.org/content/maths-minute-riemann-sphere

