THEORETICAL MODEL OF CANCER CROWTH

Aydee R. Ferrufino
MATH 441
SPRING 2016

What is cancer?

Cancer: is when abnormal cells divide in an uncontrolled way that pushes aside the healthy host cells around them.

LOSS OF NORMAL GROWTH CONTROL

NORMAL CELL DIVISION

Cell Sulcide or Apoptosis
Cell Damage-No Repalr

CANCER CELL DIVISION

Model of the cancer growth

- Interaction :
- tumor
- healthy host
- and immune effector
- Assumption : tumor and healthy cells grow in a logistic manner r, k
- Competition: Lotka-Volterra equations
* The thirds equation: Michaelis-Menten law and rate of death d_{3}

3d. Dynamical system

T- tumor cells
H- healthy host cells
E- effector immune cells
r_{i} - growth rate ($\mathrm{i}=1-3$)
k_{i} - carrying capacity
a_{ij} - competitions terms ($\mathrm{i} \neq \mathrm{j}$ and $\mathrm{i}, \mathrm{j}=1-3$)
${ }^{*} d_{3}$ - rate of death for immune cells

$$
\begin{aligned}
& \dot{T}=r_{1} T\left(1-\frac{T}{k_{1}}\right)-a_{12} T H-a_{13} T E \\
& \dot{H}=r_{2} H\left(1-\frac{H}{k_{2}}\right)-a_{21} H T \\
& \dot{E}=r_{3} \frac{E T}{T+k_{3}}-a_{31} E T-d_{3} E
\end{aligned}
$$

Non-dimensional form:

$\mathrm{r}_{2}=1.2$	$\mathrm{r}_{3}=1.291$	$\mathrm{a}_{12}=0.5$	$\mathrm{a}_{21}=4.8$	$\mathrm{a}_{13}=1.2$	$\mathrm{a}_{31}=1.1$	$\mathrm{k}_{3}=0.3$	$\mathrm{~d}_{3}=0.1$

$$
\begin{array}{ll}
\dot{x}=x(1-x)-a_{12} x y-a_{13} x z & 0=x(1-x)-a_{12} x y-a_{13} x z \\
\dot{y}=r_{2} y(1-y)-a_{21} x y & 0=r_{2} y(1-y)-a_{21} x y \\
\dot{z}=r_{3}\left(\frac{x z}{x+k_{3}}\right)-a_{31} x z-d_{3} z & 0=r_{3}\left(\frac{x z}{x+k_{3}}\right)-a_{31} x z-d_{3} z
\end{array}
$$

Polynomial form: third eqn of the system

$$
\begin{aligned}
& \quad 0=r_{3}\left(\frac{x z}{x+k_{3}}\right)-a_{31} x z-d_{3} z \\
& 0=r_{3}\left(\frac{x z}{x+k_{3}}\right)-a_{31} x z-d_{3} z \\
& \left(a_{31} x z+d_{3} z\right)\left(x+k_{3}\right)=r_{3} x z \\
& a_{31} z x^{2}+a_{13} k_{3} x z+d_{3} x z+k_{3} d_{3}=r_{3} x z \\
& 0=r_{3} x z-a_{31} z x^{2}-a_{13} k_{3} x z-d_{3} x z-k_{3} d_{3} \\
& 0=z\left(\left(r_{3}-a_{13} k_{3}-d_{3}\right) x-a_{31} z x^{2}-k_{3} d_{3}\right)
\end{aligned}
$$

Equilibrium points and stability:

- To find the equilibrium points: there are $6\left(\mathbf{x}^{*}\right)$

$$
\begin{aligned}
& F=x(1-x)-0.5 x y-1.2 x z=0 \\
& G=1.2 y(1-y)-4.8 x y=0 \\
& L=z\left(-1.1 x^{2}+0.831 x-0.03\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}} *=(0,0,0) \\
& \mathbf{x}_{2} *=(0,1,0) \\
& \mathbf{x}_{3} *=(1,0,0) \\
& \mathbf{x}_{\mathbf{4}} *=(0.75,0,0.21) \\
& \mathbf{x}_{5} *=(0.04,0,0.8) \\
& \mathbf{x}_{6} *=(0.04,0.85,0.45)
\end{aligned}
$$

\% finding the critical points of the system syms x y z $\left[\right.$ solx, soly,solz] $=$ solve $\left(\left[x-x^{\wedge} 2-0.5 * x^{*} y-1.2 * x * z==0,1.2 * y-1.2 * y^{\wedge} 2-4.8 * x^{*} y==0\right.\right.$, $((1.291 * x * z) /(x+0.3)-1.1 * z * x-0.1 * z)==0],[x, y, z]) ;$

Partial Derivatives:

$$
\begin{array}{lll}
F x=1-0.5 y-1.2 z & G x=-4.8 y & L x=z\left(\frac{0.3873}{x+0.3}-1,1\right) \\
F y=-0.5 x & G y=1.2-2.4 y-4.8 x & L y=0 \\
F z=-1.2 x & G z=0 & L z=x\left(\frac{1.291}{x+0.3}-1.1\right)-0.1
\end{array}
$$

$$
J(\bar{X})=\left(\begin{array}{ccc}
1-0.5 y-1.2 z & -0.5 x & -1.2 x \\
-4.8 y & 1.2-2.4 y-4.8 x & 0 \\
z\left(\frac{0.3873}{x+0.3}-1,1\right) & 0 & x\left(\frac{1.291}{x+0.3}-1.1\right)-0.1
\end{array}\right)
$$

To find eigenvalues : Matlab: $[\mathrm{v}, \mathrm{e}]=\operatorname{eig}(\mathrm{A})$

Equilibrium	Stability
$\mathbf{x}_{1} *=(0,0,0)$	saddle
$\mathbf{x}_{2} *=(0,1,0)$	saddle
$\mathbf{x}_{3} *=(1,0,0)$	stable (tumor equilibrium $)$
$\mathbf{x}_{4} *=(0.75,0,0.21)$	saddle
$\mathbf{x}_{5} *=(0.04,0,0.8)$	stable spiral
$\mathbf{x}_{6} *=(0.04,0.85,0.45)$	unstable spiral

Figurel. the system has two attractors (one stronger than the other one).

Transient Chaos \& Boundary Crisis :

- Sensitive to initial condition
- examine global bifurcation
- $\mathrm{r}_{3}{ }^{\mathrm{c}}=1.2909$
- Transient chaos in the system
- Destruction of chaotic attractor
- Trajectories converge to stable tumor point (which is the other attractor).

References:

López, Álvaro G., Juan Sabuco, Jesús M. Seoane, Jorge Duarte, Cristina Januário, and Miguel A.f. Sanjuán. "Avoiding Healthy Cells Extinction in a Cancer Model." Journal of Theoretical Biology 349 (2014): 74-81. Elsevier. Elsevier B.V., 7 Feb. 2014. Web. 27 Mar. 2017. <http://www.escet.urjc.es/~fisica/investigacion/publications/Papers/2014/
Lopez_Sabuco_Seoane_sanjuan_349_74_2014.pdf>.
"Stages of Cancer." Cancer Research UK. Cancer Research UK, 27 Oct. 2014. Web. 22 Apr. 2016. <http://www.cancerresearchuk.org/ about-cancer/what-is-cancer/stages-of-cancer>.
Strogatz, Steven H. "Chaos on a Stranger Attractor." Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley Pub., 1994. 317+. Print.

