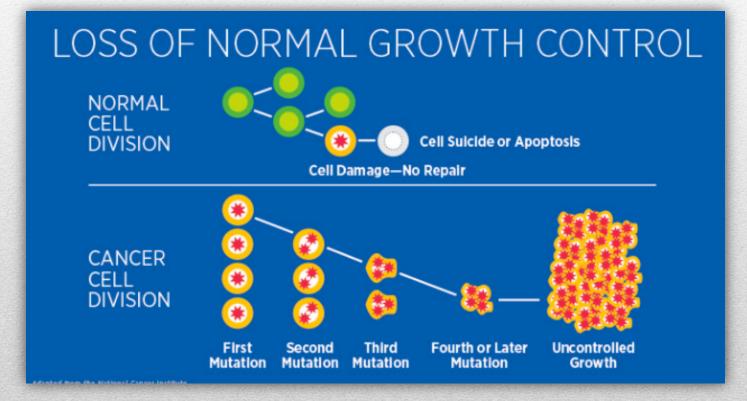
THEORETICAL MODEL OF CANCER GROWTH

Aydee R. Ferrufino MATH 441 SPRING 2016

What is cancer?

<u>Cancer:</u> is when abnormal cells divide in an uncontrolled way that pushes aside the healthy host cells around them.



Model of the cancer growth

- Interaction :
 - tumor
 - healthy host
 - and immune effector
- Assumption : tumor and healthy cells grow in a logistic manner r, k
- Competition: Lotka-Volterra equations
- * The thirds equation: Michaelis-Menten law and rate of death d₃

3d Dynamical system

T- tumor cells H- healthy host cells E- effector immune cells $\begin{array}{l} r_i - \text{growth rate (i=1-3)} \\ k_i - \text{carrying capacity} \\ a_{ij} \text{- competitions terms (} i \neq j \text{ and } i, j=1-3) \\ *d_3 \text{- rate of death for immune cells} \end{array}$

$$\dot{T} = r_1 T (1 - \frac{T}{k_1}) - a_{12} T H - a_{13} T E$$
$$\dot{H} = r_2 H (1 - \frac{H}{k_2}) - a_{21} H T$$
$$\dot{E} = r_3 \frac{ET}{T + k_3} - a_{31} E T - d_3 E$$

Non-dimensional form:

$r_2 = 1.2$	$r_3 = 1.291$	$a_{12} = 0.5$	$a_{21} = 4.8$	a ₁₃ =1.2	$a_{31} = 1.1$	$k_3 = 0.3$	d ₃ =0.1

$$\dot{x} = x(1-x) - a_{12}xy - a_{13}xz \qquad 0 = x(1-x) - a_{12}xy - a_{13}xz$$

$$\dot{y} = r_2y(1-y) - a_{21}xy \qquad 0 = r_2y(1-y) - a_{21}xy$$

$$\dot{z} = r_3(\frac{xz}{x+k_3}) - a_{31}xz - d_3z \qquad 0 = r_3(\frac{xz}{x+k_3}) - a_{31}xz - d_3z$$

Polynomial form: third eqn of the system

$$0 = r_3(\frac{xz}{x+k_3}) - a_{31}xz - d_3z$$

$$0 = r_{3}(\frac{xz}{x+k_{3}}) - a_{31}xz - d_{3}z$$

$$(a_{31}xz + d_{3}z)(x+k_{3}) = r_{3}xz$$

$$a_{31}zx^{2} + a_{13}k_{3}xz + d_{3}xz + k_{3}d_{3} = r_{3}xz$$

$$0 = r_{3}xz - a_{31}zx^{2} - a_{13}k_{3}xz - d_{3}xz - k_{3}d_{3}$$

$$0 = z((r_{3} - a_{13}k_{3} - d_{3})x - a_{31}zx^{2} - k_{3}d_{3})$$

Equilibrium points and stability:

 $\mathbf{x} : * = (0 \ 0 \ 0)$

• To find the equilibrium points: there are 6 (**x***)

$$F = x(1-x) - 0.5xy - 1.2xz = 0$$

$$G = 1.2y(1-y) - 4.8xy = 0$$

$$L = z(-1.1x^{2} + 0.831x - 0.03) = 0$$

$$x_{1} = (0,0,0)$$

$$x_{2} = (0,1,0)$$

$$x_{3} = (1,0,0)$$

$$x_{4} = (0.75,0,0.21)$$

$$x_{5} = (0.04,0.88)$$

$$x_{6} = (0.04,0.85,0.45)$$

% finding the critical points of the system syms x y z [solx,soly,solz]= solve([x-x^2-0.5*x*y-1.2*x*z==0, 1.2*y-1.2*y^2-4.8*x*y==0, ((1.291*x*z)/(x+0.3)- 1.1*z*x-0.1*z)==0],[x,y,z]);

Partial Derivatives:

$$Fx = 1 - 0.5y - 1.2z$$
 $Gx = -4.8y$
 $Lx = z(\frac{0.3873}{x + 0.3} - 1,1)$
 $Fy = -0.5x$
 $Gy = 1.2 - 2.4y - 4.8x$
 $Ly = 0$
 $Fz = -1.2x$
 $Gz = 0$
 $Lz = x(\frac{1.291}{x + 0.3} - 1.1) - 0.1$

0 3873

$$J(\overline{X}) = \begin{pmatrix} 1 - 0.5y - 1.2z & -0.5x & -1.2x \\ -4.8y & 1.2 - 2.4y - 4.8x & 0 \\ z(\frac{0.3873}{x + 0.3} - 1, 1) & 0 & x(\frac{1.291}{x + 0.3} - 1.1) - 0.1 \end{pmatrix}$$

To find eigenvalues : Matlab: [v,e]=eig(A)

Equilibrium	Stability
$\mathbf{x}_1^* = (0,0,0)$	saddle
x ₂ *= (0,1,0)	saddle
$\mathbf{x}_3 *= (1,0,0)$	stable (tumor equilibrium)
$\mathbf{x_4} = (0.75, 0, 0.21)$	saddle
$\mathbf{x}_5 = (0.04, 0, 0.8)$	stable spiral
$\mathbf{x}_6 *= (0.04, 0.85, 0.45)$	unstable spiral

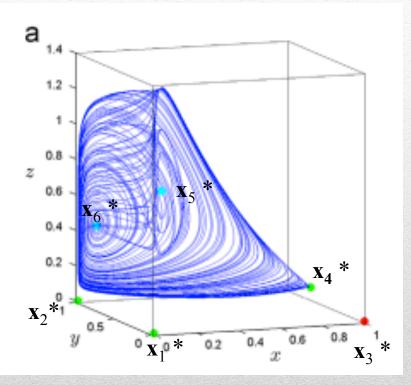
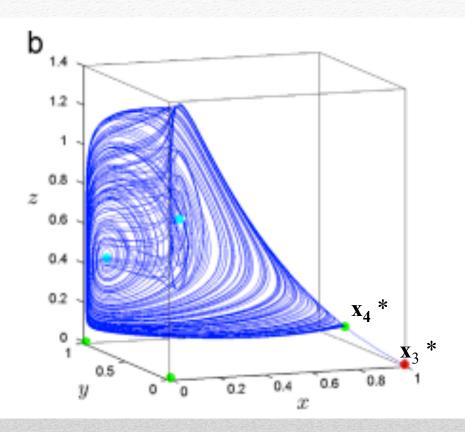


Figure 1. the system has two attractors (one stronger than the other one).

Transient Chaos & Boundary Crisis :

- Sensitive to initial condition
- examine global bifurcation
 - $r_3^c = 1.2909$
 - Transient chaos in the system
 - Destruction of chaotic attractor
 - Trajectories converge to stable tumor point (which is the other attractor).



References:

López, Álvaro G., Juan Sabuco, Jesús M. Seoane, Jorge Duarte, Cristina Januário, and Miguel A.f. Sanjuán. "Avoiding Healthy Cells Extinction in a Cancer Model." *Journal of Theoretical Biology* 349 (2014): 74-81. *Elsevier*. Elsevier B.V., 7 Feb. 2014. Web. 27 Mar. 2017. http://www.escet.urjc.es/~fisica/investigacion/publications/Papers/2014/

Lopez_Sabuco_Seoane_sanjuan_349_74_2014.pdf>.

- "Stages of Cancer." *Cancer Research UK*. Cancer Research UK, 27 Oct. 2014. Web. 22 Apr. 2016. http://www.cancerresearchuk.org/about-cancer/what-is-cancer/stages-of-cancer.
- Strogatz, Steven H. "Chaos on a Stranger Attractor." Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley Pub., 1994. 317+. Print.