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Deterministic Systems

For any deterministic system, given some initial conditions
and differential equations governing its behaviour, we can
predict the system’s future.

But we can’t measure the positions and velocities of objects
with absolute precision.

The discrepancy between the actual value of a measurement
and its approximation can grow rapidly as time increases,
giving us false predictions.

||δ(t)|| ∼ ||δ0||eλt
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Attractors

An attractor A is a closed set with the following properties:

1. A is an invariant set: any trajectory x(t) that starts in A
stays in A for all time.

2. A attracts an open set of initial conditions: there is an
open set U containing A such that if x(0) ∈ U, then the
distance from x(t) to A tends to 0 as t →∞. The largest
such U is called the basin of attraction of A.

3. A is minimal: there is no proper subset of A satisfying
conditions 1 and 2.

Strange Attractor

A strange attractor is defined to be an attractor that demonstrates
sensitive dependence on initial conditions.
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Rossler System

x ′ = −y − z

y ′ = x + ay

z ′ = b + z(x − c)

There are two equilibrium points E± for this system located at

(x±, y±, z±) = ( c±
√
c2−4ab
2 ,− c±

√
c2−4ab
2a , c±

√
c2−4ab
2a ).

E−, a saddle-focus, is always unstable, so a trajectory near it
spirals outward mainly in the x-y plane

E+, also an unstable saddle-focus, is located outside the
attractor. When a trajectory gets sufficiently close to E+ it
gets pushed back down to the x-y plane, and a new cycle
occurs.
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Rossler Attractor

stretch → fold → re-inject
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Paper-Sheet Model
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Poincare Section

This model of the Rossler attractor is locally the Cartesian
product of the Cantor set and a 2D manifold (ribbon).
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Smale Horseshoe Map

The semi-disks A and E are contracted to the semi-disks f (A)
and f (E ), both in A.

B and D are sent linearly to f (B) and f (D) through a vertical
stretch and a horizontal shrink.

C gets mapped to f (C ) in the region E .
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Smale Horseshoe Points

The point q is a sink (stable fixed point) since for any point
z = (x , y) ∈ A ∪ E ∪ C we have that z converges to q under
the forward iteration, f n(z)→ q as n→∞.
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Smale Horseshoe Points

The points p and s are saddle points.

If z lies on the horizontal line passing through p, then
f n(z)→ p as n→∞.

While if z lies on the vertical line going through p, then
f n(z)→ p as n→ −∞.
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Smale Horseshoe

We can now define two sets,

W s = {z | f n(z)→ p as n→∞}

W u = {z | f n(z)→ p as n→ −∞}

which represent the invariant stable and unstable manifolds of
p respectively.

The transverse intersection of these two manifolds occurs at
r , and so r is called a transverse homoclinic point.
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Smale Horseshoe Dynamics

The important part of the horseshoe dynamics happen on the
set,

Λ = {z | f n(z) ∈ B ∪ D ∀n ∈ Z}.

Take two symbols, 0 and 1. Let Σ be set of all bi-infinite
sequences a = {an}, n ∈ Z such that an = 0 or an = 1 for
each n ⇒ Σ = {0, 1}Z.

We next define the homeomorphic function σ : Σ→ Σ by
σ(a) = an+1.

Ben Dulaney

The Structure of Chaos



Introduction Rossler System Smale Horseshoe

Smale Horseshoe Dynamics

The important part of the horseshoe dynamics happen on the
set,

Λ = {z | f n(z) ∈ B ∪ D ∀n ∈ Z}.

Take two symbols, 0 and 1. Let Σ be set of all bi-infinite
sequences a = {an}, n ∈ Z such that an = 0 or an = 1 for
each n ⇒ Σ = {0, 1}Z.

We next define the homeomorphic function σ : Σ→ Σ by
σ(a) = an+1.

Ben Dulaney

The Structure of Chaos



Introduction Rossler System Smale Horseshoe

Smale Horseshoe Dynamics

It can be shown there also exists a homeomorphism h : Σ→ fΛ

So, given any a ∈ Σ there is a unique z ∈ Λ such that
f n(z) ∈ B whenever an = 1, while f n(z) ∈ D whenever
an = 0.

Thus, σ codes the horseshoe dynamics.

Every dynamical property of the shift map σ is possessed
equally by fΛ.

For example, Since σ has 2n periodic orbits of length n, so
does fΛ.
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Smale Horseshoe Chaos

And, so small changes in the initial conditions of Σ can
produce significant changes in a σ orbit, so this must also be
true for fΛ.

Therefore, the chaos of σ is reproduced exactly in Smale’s
horseshoe!

We Showed:

transverse homoclinicity ⇒ horseshoe ⇒ chaos
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Fin

”Geometry is not true, it is advantageous”
-Henri Poincare
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