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Attractors

m An attractor A is a closed set with the following properties:
m 1. Ais an invariant set: any trajectory x(t) that starts in A
stays in A for all time.

m 2. A attracts an open set of initial conditions: there is an
open set U containing A such that if x(0) € U, then the
distance from x(t) to A tends to 0 as t — oco. The largest
such U is called the basin of attraction of A.

m 3. Ais minimal: there is no proper subset of A satisfying
conditions 1 and 2.

Strange Attractor

A strange attractor is defined to be an attractor that demonstrates
sensitive dependence on initial conditions.

Ben Dulaney
The Structure of Chaos




Rossler System

Rossler System

X' =-y—z
y'=x+ay
Z=b+z(x—c)
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/
X =—-y—z

y'=x+ay
Z=b+z(x—c)

m There are two equilibrium points EL for this system located at

_ (ct\/c2—4ab ct+vVc2—4ab c+/c2—4ab
(X, ya, z2) = (S59G-S5, S955,72).
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Rossler System

/
X =—y—z

y'=x+ay
Z=b+z(x—c)

m There are two equilibrium points EL for this system located at

_ (ckVc2—4ab ctvVc2—4ab c+v/c2—4ab
(X, ya, z4) = (55572, - =572, \/23 )-

m E_, a saddle-focus, is always unstable, so a trajectory near it
spirals outward mainly in the x-y plane

m £, also an unstable saddle-focus, is located outside the
attractor. When a trajectory gets sufficiently close to Ey it
gets pushed back down to the x-y plane, and a new cycle
occurs.
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Rossler System

Rossler Attractor

20 a0

stretch — fold — re-inject
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Rossler System

Paper-Sheet Model
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Rossler System

Poincare Section
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Rossler System

Poincare Section

m This model of the Rossler attractor is locally the Cartesian
product of the Cantor set and a 2D manifold (ribbon).
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Smale Horseshoe

Smale Horseshoe Map
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m The semi-disks A and E are contracted to the semi-disks 7(A)
and f(E), both in A.

m B and D are sent linearly to f(B) and (D) through a vertical
stretch and a horizontal shrink.

m C gets mapped to 7(C) in the region E.
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Smale Horseshoe

Smale Horseshoe Points

m The point g is a sink (stable fixed point) since for any point
z=(x,y) € AUE U C we have that z converges to g under
the forward iteration, f"(z) — q as n — oc.
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Smale Horseshoe Points
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m The points p and s are saddle points.

m If z lies on the horizontal line passing through p, then
f"(z) — p as n — oo.

m While if z lies on the vertical line going through p, then
f"(z) - pas n— —oc.
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Smale Horseshoe

Smale Horseshoe

m We can now define two sets,
W ={z|f"(z) > pasn— oo}

WY ={z|f"(z) > pasn— —oo}

which represent the invariant stable and unstable manifolds of
p respectively.

m The transverse intersection of these two manifolds occurs at
r, and so r is called a transverse homoclinic point.
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Smale Horseshoe

Smale Horseshoe Dynamics

m The important part of the horseshoe dynamics happen on the
set,
N={z|f"(z) e BUDVYneZ}.
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Smale Horseshoe Dynamics

m The important part of the horseshoe dynamics happen on the
set,
N={z|f"(z) e BUDVYneZ}.

m Take two symbols, 0 and 1. Let ¥ be set of all bi-infinite
sequences a = {a,},n € Z such that a, =0 or a, = 1 for

each n = ¥ = {0,1}2.
m We next define the homeomorphic function o : ¥ — ¥ by
o(a) = ant1.
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Smale Horseshoe Dynamics

m It can be shown there also exists a homeomorphism h: ¥ — fp

m So, given any a € ¥ there is a unique z € A such that
f"(z) € B whenever a, = 1, while f"(z) € D whenever
an, =0.

m Thus, o codes the horseshoe dynamics.
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Smale Horseshoe Dynamics

m It can be shown there also exists a homeomorphism h: ¥ — fp

m So, given any a € ¥ there is a unique z € A such that
f"(z) € B whenever a, = 1, while f"(z) € D whenever
a, =0.

m Thus, o codes the horseshoe dynamics.

m Every dynamical property of the shift map o is possessed
equally by fj.

m For example, Since o has 2" periodic orbits of length n, so
does fx.
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Smale Horseshoe

Smale Horseshoe Chaos

m And, so small changes in the initial conditions of ¥ can
produce significant changes in a ¢ orbit, so this must also be
true for fa.
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Smale Horseshoe Chaos

m And, so small changes in the initial conditions of ¥ can
produce significant changes in a ¢ orbit, so this must also be

true for fa.
m Therefore, the chaos of o is reproduced exactly in Smale's

horseshoe!

We Showed:

transverse homoclinicity = horseshoe = chaos
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Smale Horseshoe

" Geometry is not true, it is advantageous’
-Henri Poincare
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