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Logistic Map

The logistic map is a first-order difference equation discovered to have

complicated dynamics by mathematical biologist Robert May. The general
form is given by

Xn+1 = Xn(1 — xp),

where x, is the population of nth generation and r > 0 is the growth rate.
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Applications of the Logistic Map

@ Generally used in population biology to map the population at any
time step to its values at the next time step

o Additional applications include:

Genetics - change in gene frequency

o Epidemiology - fraction of population infected

e Economics - relationship between commodity quantity and price

e Social Sciences - number of people to have heard a rumor
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Logistic Map Derivation

@ Derived from the logistic difference equation
Npy1 = Nu(r — alNy,),

by letting x = aN/r

@ Results in simplest non-linear difference equation

Xnt1 = Xn(1 — xn)

Parabola with a maximum value of r/4 at x, = 1/2
@ For 0 <r <4, maps 0 < x, <1 into itself
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Variation of Growth Rate

@ Limit growth rate to interval 0 < r < 4
@ Range of behavior as r is varied:

e Population reaches extinction for r < 1
o Non-trivial steady state for 1 < r < 3
o Fluctuations in population for r > 3
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Variation of Growth Rate
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Fixed Points of Logistic Map

Fixed points satisfy the equation
f(x*) =x" = rx"(1 — x¥),
which gives
x*(1—r+r")=0.
Thus, we have that )

x*=0 or x*=1--.
r
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Stability of Fixed Points

Stability is given by |f'(x*)| < 1. We have that f'(x*) = r — 2rx*. Thus,
e |f(0)] =|r] = x* =0is stable for r <1
o [fl(1-1)=2—r] = x*=1—1isstablefor 1 <r<3

A period-2 cycle exists for r > 3. A fixed point p is stable if

| L F(£(p))| < 1. Therefore,
e the 2-cycle is stable for 3 < r < 1++/6
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@ For r <1, x* =0 is stable.

@ At r = 1, a transcritical bifurcation occurs and x* = 0 becomes
unstable.

e Forl<r<3, x*zl—% is stable.

o At r = 3, a flip bifurcation occurs and x* =1 — % becomes unstable.

@ A period-2 cycle is stable for 3 < r < 1+ /6.
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Bifurcation Diagram

@ Solid line indicates stable

@ Dashed line indicates unstable
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Period Doubling

As the period-2 cycle becomes unstable, a stable period-4 cycle appears.
The period-4 cycle becomes unstable with the emergence of a stable
period-8 cycle. This is followed by a period-16 cycle and so on.

The parameter value r, at which a period-2" cycle is created converges
geometrically to a limiting value ry,. The distance between successive

transitions is given by

§= lim =1 _ 4.6692016001...

n=00 rpy1 — In
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Orbit Diagram

Orbit Diagram of the Logistic Map, o= n:nﬁ-xn)
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Period Doubling

Orbit Diagram of the Logistic Map, x__,=rx (1-x )
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Chaotic Behavior & Period Windows

@ At r = ryo = 3.57, map
becomes chaotic and
settles toward an infinite
number of values. o7

Orbit Diagram of the Logistic Map, X = rxn(1-xn)

@ Periodic windows emerge
out of chaotic behavior

@ Beginning of period-3
window at r = 3.83
defined by a tangent
bifurcation.
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Strange Attractors & Fractals

012 L L 1 L L L 1 L L
3.846 3.847 3.848 3.849 3.85 3.851 3.852 3.853 3.854 3.855 3.856
Growth rate, r

Same pattern exists at every scale - zooming into the orbit diagram
exposes smaller copies of the larger structure
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Butterfly Effect

Butterfly Effect in Logistic Model with Close Initial Conditions
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@ Discovered by Lorenz

@ Arbitrarily close initial
conditions can lead to
trajectories that diverge
over time
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Conclusion

@ Simple first-order nonlinear equation with extraordinary dynamical
behavior

@ Presents transition from stable fixed points to stable cycles to
fluctuations between infinite values

@ Presence of fractal form

@ Divergent behavior over time despite equation’s deterministic
simplicity

@ Sensitive dependence on initial conditions
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