Math 441 (Spring 2017) Final Exam

Name:

Attempt all questions to the best of your knowledge

1. (Picard's iteration) Prove, using Picard's iteration, that the solution to the system $y^{\prime}=2 y, y(0)=1$ is the function $y(t)=e^{2 t}$.
2. (Existence and uniqueness) Write a precise statement of Picard's existence and uniqueness theorem for the system $x^{\prime}=f(t, x), x(0)=x_{0}$, then prove the existence part.
What happens if you drop the Lipschitz condition on f ?

3. (Alpha and Omega limit sets)

(a) Define an ω-limit set for a dynamical system $\vec{x}^{\prime}=\vec{f}(\vec{x})$.
(b) Prove that the ω-limit set is closed (it contains all its limit points).

4. (Poincare Bendixson Theorem)

(a) Why does Poincare Bendixon Theorem only work for two dimensional dynamical systems? (What would go wrong in the proof had the system been higher dimensional?)
(b) Prove that the system $r^{\prime}=r\left(1-r^{2}\right)+\mu r \cos (\theta), \theta^{\prime}=1$ has a limit cycle in the region bounded between $0.999 \sqrt{1-\mu}<r<1.001 \sqrt{1+\mu}$.
5. (Hamiltonian system) Consider the dynamical system, $x^{\prime}=\frac{\partial H}{\partial y}+\mu H \frac{\partial H}{\partial x}, y^{\prime}=-\frac{\partial H}{\partial x}+\mu H \frac{\partial H}{\partial y}$, where $H(x, y)=\frac{1}{2} y^{2}-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}$.
(a) Prove that $H^{\prime}=\frac{d H}{d t}=\mu H\left[\left(\frac{\partial H}{\partial x}\right)^{2}+\left(\frac{\partial H}{\partial y}\right)^{2}\right]$.
(b) Deduce that $H \rightarrow 0$ as $t \rightarrow \infty$ if $\mu<0$.
(c) Sketch the graph of $H(x, y)=0$ (hint: infinity figure).
(d) Deduce that any orbit starting outside the set $H=0$ will approach it from the outside. What is the ω-limit set of such an orbit?
(e) Make a sketch of the phase portrait.
6. (Gradient system) Prove that gradient systems cannot have limit cycles.
7. (Lyapunov function) Find a and b so that the function $V=a x^{2}+b y^{2}$ is a Lyapunov function for the system $x^{\prime}=y-x^{3}, y^{\prime}=-x-y^{3}$.
8. (Gronwal's inequality) Prove Gronwal's inequality: Let $u:[0, \alpha] \rightarrow \mathbb{R}$ be continuous and nonnegative. Suppose $C \geq 0$ and $K \geq 0$ are such that $u(t) \leq C+\int_{0}^{t} K u(s) d s$ for all $t \in[0, \alpha]$. Then for all $t \in[0, \alpha], u(t) \leq C e^{K t}$.

9. (Chaos)

(a) What makes a dynamical system chaotic?
(b) Can a linear system be chaotic?
(c) Define the term strange attractor. Contrast with a 'non-strange' attractor.

