Math 441 Analysis and Dynamics of Differential Equations Written Assignment 4

Read your lecture notes and chapters 5 and 6. Submit the following problems. (Topics: Two Dimensional Flows. Linear and nonlinear systems. Phase Portraits.)

1. The matrix $A=\left(\begin{array}{cc}4 & -10 \\ 2 & -4\end{array}\right)$ has an eigenvalue $\lambda_{1}=2 i$ and a corresponding eigenvector $\underline{v}=$ $\binom{2+i}{1}$.
(a) Find the real solution of the system $\underline{w}^{\prime}=A \underline{w}$.
(b) Each trajectory is an ellipse. Write down the parametric equations of these ellipses: $x(t)=$ \ldots and $y(t)=\ldots$
(c) Along which directions are the major and minor axis of these ellipses are? (Does the eigenvector tell you any information about this?)
(d) Use a graphing utility to plot the coordinates $x(t)$ and $y(t)$ as a function of t, when the initial conditions are $x(0)=-4$ and $y(0)=-1$.
(e) Plot the phase portrait.
2. Analyze the type and stability of the critical points of the following predator-prey ecological system,
then plot a phase portrait showing all interactions and the separatrices if any.

$$
\left\{\begin{array}{l}
x^{\prime}(t)=7 x-x^{2}-2 x y \\
y^{\prime}(t)=y-y^{2}+2 x y
\end{array}\right.
$$

3. Consider the damped nonlinear pendulum

$$
\theta^{\prime \prime}+0.1 \theta^{\prime}+\sin (\theta)=0
$$

Transform into a first order system, find the critical points, linearize to study the types and the stability of the critical points, then plot a phase portrait, showing the separatrices.
4. Use a phase portrait graphing utility to plot the phase portraits of the systems in problems 1, 2, and 3 above, hence confirming your predictions.
5. 5.1.10 (a, d), 5.1.11 (a,d).
6. 6.2.1.
7. 6.3.10.
8. 6.3.11.

