
Math 441 Analysis and Dynamics of Differential Equations

1 First half of the semester
1. What is a dynamical system? (Mathematical defi-

nition: differential equations approach). Difference
between a differential equation and a dynamical
system.

2. What is the dimension of a dynamical system?

3. What is chaos?

4. Why is it easier to study linear systems? (Principle
of superposition of solutions.)

5. Why is it important to study nonlinear systems?

6. History of dynamics.

7. Classification of phenomena according to dimen-
sion and linearity (overview).

8. Phase portrait (axes: state variables, time: im-
plicit, critical points).

9. Describing the solution qualitatively (without ob-
taining an analytical solution): critical points (sta-
tionary), stability analysis, phase portrait, slope
field, analysis of differential equations techniques
(boundedness, regularity, etc.).

10. Basic examples:

• Natural and logistic population growth mod-
els; bifurcation.

• The linear and nonlinear pendulum:
Nonlinear pendulum: modeling, transform-
ing higher order differential equations into a
first order system of equations in higher di-
mensions, critical points, stability, phase por-
trait and interpretation, energy conservation.
Linear pendulum: small angle approximation,
linearization, analytical solution, phase por-
trait and interpretation.

11. Taylor expansion and Taylor theorem. Differ-
ence between smooth and analytic real functions.
(No such difference for differentiable complex func-
tions).

12. Linearization around a critical point. Taylor’s the-
orem. Higher order terms. First derivative signifi-
cance and the Jacobian. What if those are zero at
the critical point? When does the behavior of the
linearized system transcend to the nonlinear system
(theorems)?

13. Examples we’ve worked out in class:

(a) x′(t) = ax.

(b) ~x′(t) = A~x.

(c) Logistic equation x′(t) = kx(M −x). Logistic
equation with harvesting x′(t) = kx(M−x)−h
(and bifurcation).

(d) Nonlinear pendulum θ′′ + g
L sin(θ) = 0.

(e) Linear pendulum θ′′ + g
Lθ = 0.

(f) Examples of first order ODEs and their phase
portraits.

(g) Examples of linear and nonlinear systems in
two dimensions.

14. Types of critical points in the phase plane (a topic
related to two dimensional dynamical systems):
derivation, repeated eigenvalues, canonical forms,
sensitive cases.

15. Conservative systems, reversible systems. Nonlin-
ear centers in conservative and reversible systems.

16. Planar systems with inherent radial symmetry:
analysis using polar coordinates.

17. Matrix canonical forms. Similarity in matrices. Ex-
ponential of a matrix (definition, properties, solv-
ing linear dynamical systems).

2 Second half of the semester

1. Existence and Uniqueness theorem and proof. Pi-
card’s iteration.

2. Well-posedness. Continuous dependence on data.
Gronwall’s inequality.

3. Two dimensional systems: Poicare Bendixon The-
orem, examples and proof.

4. Three dimensional systems and chaos.
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3 Summary- According to Dimen-
sion

3.1 One dimensional flows
1. ẋ = f(x) is one dimensional while ẋ = f(x, t) is

two dimensional.

2. Theory:

• Well posed-ness for forward and inverse prob-
lems.

• Existence and uniqueness of solutions: Pi-
card’s theorem. Picard’s iteration. Proof
and examples. Ideas: fixed point iteration,
sequences of functions, uniform convergence,
Cauchy sequence.

3. Nonlinear systems - interesting behavior that
could happen: non-uniqueness, finite time blow-up,
finite time approach to critical point, singularities
and behavior near singularities.

4. Geometric representation of solutions: (All
solutions in one dimension either settle down to
equilibrium or head out to infinity! No oscilla-
tions.)

(a) Slope field (time is explicit). Analytical so-
lutions plots (time is explicit). Impossibility
of oscillations of solutions for one dimensional
flows.

(b) Phase portrait (time is implicit): One dimen-
sional line, with critical points. Stability:
qualitative analysis.

5. Stability of critical points:

(a) Linear stability: Linearizing near a critical
point (Taylor theorem, etc.).

(b) Local and global stability.
(c) Potentials (energies): ẋ = − d

dx (V (x)). Lo-
cal and global stability using potentials or gra-
dient flows.

6. Numerical solutions: Euler’s method, Improved
Euler, Runge-Kutta. Error characterization: local
and global errors. Importance of analysis and a
good understanding of the ODE, true solution, nu-
merical method and its stability, convergence and
error before making conclusions: Examples where
numerics are misleading.

3.2 Two dimensional flows
1. Oscillatory solutions allowed. Orbits.

2. Nonlinear systems: ~x′(t) = ~f(~x(t)): critical
(stationary) points, linearizing (analysis, sensitive
cases: where linearization may only give partial in-
formation about the dynamics near the stationary

point, Jacobian), phase portraits from lineariza-
tion, limit cycles in nonlinear flows.

3. Linear systems: ~x′(t) = A~x(t): analytical so-
lutions (real and complex eigenvalues, repeated
eigenvalues including defective case), types of crit-
ical points, all possible phase portraits.

4. Computer graphing: phase portrait generators.
Graphing analytical solutions in terms of t. Nu-
merically solving the ODE (again solution in terms
of t).

5. Limit cycles in nonlinear flows:

(a) What is a limit cycle?

(b) Limit cycle stability types.

(c) How do we know a system has a limit cycle?
Steps in that direction:

• Poincare Bendixon theorem. Other than
proving that a limit cycle exists, this is a
key theorem in nonlinear dynamics since
it implies that chaos cannot occur in the
phase plane.

(d) How do we know a system cannot have a limit
cycle?

• Gradient systems cannot have limit cy-
cles.

• Systems with Liaponuv functions cannot
have limit cycles.

• Dulac’s criterion (based on Green’s theo-
rem).

• Index theory.
• others?

(e) How many limit cycles does a given system
have?

(f) If a system has a limit cycle, what’s the shape
of the limit cycle? Stability? Period?

(g) Examples:

• {
x′ = −y + x(1− x2 − y2)

y′ = x+ y(1− x2 − y2)

• Leinard systems.
• Vander Pol equation.

6. α and ω limit sets, their properties, and proof of
Poincare Bendixon theorem.

7. Hopf bifurcation (subcritical and super critical)
and examples.
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Figure 1: A bifurcation diagram (with chaos)

3.3 Three Dimensional Flows and Chaos
1. How did it all start? Laplace’s demon. Lorentz

weather model (1970s). The butterfly effect.

2. Chaos (indeterminism at its best).

3. Famous examples:

• Lorentz equations (simplified few Navier
Stokes equations modeling fluid dynamics):

ẋ = P (y − x)

ẏ = Rx− y − xz

ż = xy −By

• Rossler system (arose from studying oscilla-
tions in chemical reactions)

ẋ = −(y + z)

ẏ = x+Ay

ż = B + xz − Cz

4. Chaos on strange attractors.

• Henon’s attractor,
xn+1 = (yn + 1)− (1.4x2n)

yn+1 = 0.3xn

x0 = 1, y0 = 1

5. Fractals:

• Dimension of self- similar fractals D =
log(N)/ log(1/r) (for a self similar object of
N parts scaled down by a factor r).

• Iterated Function Systems (IFS)(
xn+1

yn+1

)
=

(
a b
c d

)(
xn
yn

)
+

(
e
f

)
6. Liapunov exponent.
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