
Finite Element Methods for the Poisson
Equation and its Applications

Charles Crook

July 30, 2013

Abstract

The finite element method is a fast computational method that
also has a solid mathematical theory behind it. We visualize the fi-
nite element approximation to the solution of the Poisson equation
on different type of domains and observe the corresponding order of
convergence. As a real-world application of the Poisson equation, we
use the finite element approximation to distinguish different cartoon
characters. Furthermore, we use the weighted Poisson equation arising
from the axisymmetric Poisson equation to distinguish axisymmetric
three-dimensional objects as well.

1 Poisson Equation with Homogenous Dirich-

let Boundary Conditions

Given the problem, find the function u that satisfies the following,

−∆u = F in Ω
u = 0 on ∂Ω

where F is given data. The goal is to find a ‘good’ approximation to the
exact solution u.

1

2 The Finite Element Method

The Finite Element Method is called so, since it starts by taking the inputted
domain and performing calculation to make the domain into now finitely man
elements. The elements in my case are triangles.

With each mesh generated, that mesh has exactly one finite element ap-
proximation uh. As the meshes become more refined, the uh changes to
better approximate the exact solution. The main idea of the finite element
method is that it changes the infinite dimension problem into a finite dimen-
sion problem. With the problem now converted into a finite dimension, it
can now be changed to a matrix system, using basis functions, for finding
the solution.

3 Finite Elements Subspace P 0
1

We now define the space we are working in to be P 0
1 , which means after the

domain has had the finite element method applied to it, each element inside
has a plane above it represented by the function ax+by+c, and the collection
of all functions over the domain has to be continuous and have zero boundary
conditions as well. The dimension of this space, P 0

1 , is the total number of

2

interior nodes.

4 Basis of P 0
1

Now, we construct a Φi for each interior node vi using the formula below,

Φi(vj) =

{
1, if i = j

0, if i 6= j

For example, to construct Φ1, you would have to plug in each interior node
and find the value at each. At V1, Φ1 = 1, and at V2, V3, ..., V9, Φ1 = 0. Also,
with the given initial condition, Φ1 = 0 on the boundary. Now connecting
each of the nodes together requires the use of the plane function, ax+ by+ c,
from earlier.

5 Infinite Dimensional Problem ⇒ Finite Di-

mensional Problem

The infinite dimension problem, shown below
Find u ∈ H1

0 (Ω) s.t.∫
Ω 5u5 v =

∫
Ω Fv ∀v ∈ H1

0 (Ω)

where H1
0 = {f :

∫
Ω
f 2 <∞,

∫
Ω

[5f]2 <∞, f = 0 on ∂Ω} is now converted

to the finite dimensional problem, through the use of the Finite Element

3

Subspace, is shown below,

Find uh ∈ P 0
1 s.t.∫

Ω 5uh5 vh =
∫

Ω Fvh ∀vh ∈ P 0
1

6 Finite Dimensional Problem ⇒ A~x = ~b

We convert the new finite problem down to a matrix system by using uh =
n∑

i=1

ciΦi. ∫
Ω 5uh5 vh =

∫
Ω Fvh ∀vh ∈ P 0

1∫
Ω 5(

n∑
i=1

ciΦi)5 Φj =
∫

Ω FΦj ∀j = 1, 2, . . . n

n∑
i=1

ci
∫

Ω 5Φi5 Φj =
∫

Ω FΦj ∀j = 1, 2, . . . n

n∑
i=1

ci
∫

Ω
5Φi5 Φj =

∫
Ω
FΦj ∀j = 1, 2, . . . n

A ~c = ~b

Where, the underlined red portion corresponds to the ith entry of ~c.
The underlined blue portion indicates the ijth entry of the matrix A.
The underlined green portion is jth entry of ~b.
To find more a exact solution, requires a finer mesh. With this, the matrix

A will become larger with each mesh. So to find a more exact solution, you
will have wait longer for the program to finish.

4

7 Numerical Example

7.1 Example One

The problem for example one was,
Find a function, u, with the given function, F, such that
−∆u = F in Ω
u = 0 on ∂Ω

I picked a ‘nice’ F such that u = xy(x− 1)(y − 1). By ‘nice’, I mean where
the u = 0 on ∂Ω and u is a polynomial.

mesh ‖ u− uh ‖ OoC ‖ 5u−5uh ‖ OoC
1 0.0186579226 —— 0.1074034163 ——
2 0.0057148929 1.7070 0.0588911882 0.8669
3 0.0015087244 1.9214 0.0301758912 0.9647
4 0.0003824646 1.9799 0.0151826243 0.9910
5 0.0000959512 1.9950 0.0076032633 0.9977
6 0.0000240088 1.9987 0.0038031293 0.9994

The L2 error in the chart is reducing by about 1/4 each mesh. The order of
convergence is the ratio of two meshes with respect to the largest edge length.
Since the mesh size is decreasing by 1/2 each time, the order of convergence
converges to 2.

5

Figure 1: Top View of the six meshes

Figure 2: Tilted View of the six meshes

6

7.2 Example Two

In Example 2, I decided to change the domain to be more complicated, by
removing part of the domain.

u = xy(x− 1)(y − 1)(x− 0.25)(y − 0.25)(y − 0.75)

mesh ‖ u− uh ‖ OoC ‖ 5u−5uh ‖ OoC
2 0.0003341186 —— 0.0042327447 ——
3 0.0001088289 1.6183 0.0024042537 0.8160
4 0.0000293177 1.8922 0.0012455389 0.9488
5 0.0000074747 1.9717 0.0006285406 0.9867
6 0.0000018781 1.9927 0.0003150047 0.9966

Figure 3: Top View of the five meshes

7

Figure 4: Tilted View of the five meshes

8

7.3 Example Three

For Example 3, I changed the domain to be more complicated by adding a
hole inside it.

u = xy(x− 1)(y − 1)(x− 0.25)(y − 0.25)(y − 0.75)(x− 0.5)(x− 0.75)

mesh ‖ u− uh ‖ OoC ‖ 5u−5uh ‖ OoC
3 0.0000069270 —— 0.0001657242 ——
4 0.0000021446 1.6915 0.0000916471 0.8546
5 0.0000005696 1.9127 0.0000471180 0.9598
6 0.0000001447 1.9769 0.0000237300 0.9896

Figure 5: Top View of the four meshes

9

Figure 6: Tilted View of the four meshes

7.4 Conclusion

For examples 1 through 3, even though the domain got more complicated,
the order of convergence still converged to 2. The reason why this happens is
that for each of the domains, I picked a ‘nice’ F such that u is a polynomial
and all initial conditions hold true.

10

8 Order of Convergence relative to the Do-

main

In this section, we will show that as the domain gets more complex, when
F = 1, the Order of Convergence would not approach 2, but a number less
instead.

−4 u = 1 in Ω
u = 0 on ∂Ω

Meshes OoC Meshes OoC Meshes OoC Meshes OoC
1,2,3 1.700569 1,2,3 1.725416 1,2,3 1.701380 2,3,4 1.650589
2,3,4 1.745914 2,3,4 1.663195 2,3,4 1.644536 3,4,5 1.569222

Order of Convergence = log2

||uh1 − uh2||
||uh2 − uh3||

Please note that the above formula is relative to meshes 1,2,3. The formula can be modified accordingly

to fit the desired meshes.

Notice that as the domain becomes more complicated, the exact solution
also becomes more complicated, and this is why the Order of Convergence
goes down.

11

9 Exact Solutions with Nonzero boundary con-

ditions

Example 4 shows that for the meshes, you don’t have to have zero-boundary
conditions. Below, the key is to the left showing the boundary conditions for
the contour map on the right.

12

10 Shape Recognition using the Finite Ele-

ment Approximation of the Poisson Equa-

tion

In this section, I started to apply techniques learned in the paper “Shape
Representation and Classification Using the Poisson Equation.” [Gorelick, et
al: 2006]

Mainly, I focused on using their formula for Φ, Φ = U + U2
x + U2

y , and
applying to my domains, and then learning the special properties it upholds.
For this section, I decided to use the block letters of the alphabet, H, J, L,
T, and U.

Φ can be used to locate the corner of the domain where uh is changing
most rapidly or slowly, or where Φ is at its maximum or minimum. And if I
wanted to extract certain parts of the domain from their respective heights,
the log(Φ) is calculated and graphed. From now onwards, any extracted
piece of the domain is taken from the log(Φ).

Figure 7: Contour Maps of the uhs

13

Figure 8: Contour Maps of U2
x + U2

y

Figure 9: Contour Maps of Φ

14

Figure 10: Contour Maps of log(Φ)

15

11 Weighted Case of the Poisson Equation

I learned and applied the weighted case of the Poisson Equation to each of
the block letters from the previous section. The weighted case is found by
multiplying x to each side of the formula, and now it becomes

N∑
i=1

ci

∫
Ω

5Φi5 Φjx =
∫

Ω
FΦjx

This weighted Poisson equation arises when performing dimension reduction
to the axisymmetric 3D Poisson equation.

Figure 11: Contour Maps of uh

16

Figure 12: Contour Maps of Φ

Figure 13: Contour Maps of log(Φ)

17

12 Extraction of Parts of Domains using Φ

In this example, We now want to extract a certain percent of the graph out
and plot that. In my case, I used the domains of somewhat well known
cartoon characters, Goku from Dragonball Z, Sonic the Hedgehog, and The
Ice King from Adventure Time. I did the normal process of graphing the
contour maps of uh, Φ, and log(Φ). I wanted to observe if exactly one specific
range of Φ is ideal for identifying key features of any domain, and I found a
specific range, the bottom 35%

With each of these graphs, there contained some ’noise’ points. To remove
these noise points, a simple removal formula was used, find the second largest
containment of points, and take 10% of that. If any cluster of points are less
than that value, they were removed.

Figure 14: Contour Maps of uh

Figure 15: Contour Maps of log(Φ)

18

Figure 16: Contour Maps of log(Φ) with noise

Figure 17: Contour Maps of log(Φ) without noise

The purpose of this is to show that I can take any domain and extract,
then graph, the key features from it.

19

13 Extension to Axisymmetric 3D Domain

Now, I wanted to see if I could apply the previous extraction technique to
the case of Axisymmetric 3D examples. So to start out, I have a dish or
satellite dish graph shown first. I used dimension reduction to change this
from 3D to 2D so it will be more computationally efficient. Then, I applied
the extraction from the previous example, and rotated around the y-axis to
convert the problem back to 3D.

Figure 18: 3d rotation of the axisymmetric satellite dish

20

Figure 19: 2d Contour Map of the axisymmetric satellite dish

21

Figure 20: 2d Contour Map of the axisymmetric satellite dish with a triangle
added

Figure 21: 0-35% of the previous figure

22

Figure 22: 3d rotation of the 0-35% of Φ

23

24

