8 I Straightedge and compass

It seems from these two constructions that bisecting a line segment and
bisecting an angle are virtually the same problem. Euclid bisects the angle
before the line segment, but he uses two similar constructions (Elements,
Propositions 9 and 10 of Book I). However, a distinction between line seg-
ments and angles emerges when we attempt division into three or more
parts. There is a simple tool for dividing a line segment in any number of
equal parts—paraliel lines—but no corresponding tool for dividing angles.

Constructing the parallel to a line through a given point

We use the two constructions of perpendiculars noted above—for a point
off the line and a point on the line. Given a line % and a point P outside 2,
first construct the perpendicular line . to - through P. Then construct
the perpendicular to .# through P, which is the parallel to & through P.-

Dividing a line segment into equal parts

Given a line segment AB, draw any other line .% through A and mark
7 successive, equally spaced points Ay,Ay, A3, ..., A, along .# using the
compass set to any fixed radius. Figure 1.8 shows the case n = 5. Then
connect A, to B, and draw the parallels to BA, through Ay, 4,, ... vAn_1.
These parallels divide AB into 7 equal patts.

Figure 1.8: Dividing a line segment into equal parts

This construction depends on a property of paralle] lines sometimes at-
tributed to Thales (Greek mathematician from around 600 BCE): parallels
cut any lines they cross in proportional segments. The most commonly
used instance of this theorem is shown in Figure 1.9, where a parallel to
one side of a triangle cuts the other two sides proportionally.

1.3 Some basic constructions 9

The line .Z parallel to the side BC cuts side AB into the Segments AP
and PB, side AC into AQ and OC, and |AP|/ |PB| = [AQ|/ loC|.
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Figure 1.9: The Thales theorer in a triangle

This theorem of Thales is the key to using algebra in geometry, In
the next section we see how it may be used to multiply and divide line
segments, and in Chapter 2 we investigate how it may be derived from
fundamental geometric principles.

Exercises

-.w.uownowuuoﬁ.wdﬁmmﬁﬁm ooumn.unnoumom perpendiculars and paraliels de-
scribed in words above, :

1.3.2 Can you find a more direct construction of parallels?

Perpendiculars give another important polygon—the square.
1.3.3 Give a construction of the square on a given line segment.
134 Givea nobm_u.:omou of the square tiling of the plane.

One might try to-use division of a line segment into equal parts to divide
an angle into # equal parts as shown in Figure 1.10."We mark 4 on OP and B at
equal distance on OQ as before, and then try to divide angle POQ by dividing line
segment AB. However, this method is faulty even for division int6 three parts,

%K N : at .w\@

Figure 1.10: Fanlty trisection of an angle

1.3.5 Explain why division of AB into three equal parts (trisection) does not al-
ways divide angle POQ into three equal parts. (Hint: Consider the case in
which POQ is nearly a straight line.)
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The version of the Thales theorem given above (referring to Figure 1.9) has
an equivalent form that is often useful.

1.3.6 If A,B,C,F,Q are as in Figure 1.9, so that |AP|/|PB| = |AQ|/|QC)|, show
that this equation is equivalent to {AP|/|AB| = |AQ)|/|AC].

1.4 Multiplication and division

Not only can one add and subtract line segments (Section 1.1); one can also
multiply and divide them. The product ab and quotient a/b of line seg-
ments a and b are obtained by the straightedge and compass constructions
below. The key ingredients are parallels, and the key geometric property
involved is the Thales theorem on the proportionality of line segments cut
off by parallel lines. .

To get started, it is necessary to choose a line segment as the unit of
length, 1, which has the property that 1a = g for any length a.

Product of line segments

To multiply line segment & by line segment a, we first construct any triangle
UOA with |OU| =1 and |OA| = a. We then extend QU by length b to B,
and construct the parallel to UA through B;. Suppose this parallel meets
the extension of OA at C (Figure 1.11).

By the Thales theorem, [AC| = ab.

Figure 1.11: The product of line segments

1.4  Muitiplication and division 11

Quotient of line segments

To divide line segment b by line segment a, we begin with the same triangle
UOA with |OU| =1 and |OAf = a. Then we extend OA by distance b to
B, and construct the parallel to UA through Bs. Suppose that this parallel
meets the extension of OU at D (Figure 1.12).

By the Thales theorem, [UD| = b/a.

Figure 1.12: The quotient of line segments

The sum operation from Section 1.1 allows us to construct a segment
n units in length, for any natural number », simply by adding the segment
1 to itself n times. The quotient operation then allows us to construct a
segment of length m/n, for any natural numbers m and # # 0. These are
what we call the rational lengths. A great discovery of the Pythagoreans
was that some lengths are not rational, and that some of these “irrational”
lengths can be constructed by straightedge and compass. It is not known
how the Pythagoreans made this discovery, but it has a connection with the
Thales theorem, as we will see in the next section. .

Exercises

Exercise 1.3.6 showed that if PQ is parallel to BC in Figure 1.9, then |AP|/|AB| =
|AQ{/|AC|. That is, a parallel implies proportional (left and right) sides. The
following exercise shows the converse: proportional sides imply a parallel, or
(equivalently), a nonparallel implies nonproportional sides,

14.1 Using Figure 1.13, or otherwise, show that if PR is not parallel to BC, then
|AP|/IAB]| +# |AR|/|AG).
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Figure 1.13: Converse of the Thales theorem

1.4.2 Conclude from Exercise 1.4.1 that if P'is any point on AB and Q is any point
on AC, then PQ is parallel to BC if and only if \AP|/|AB| = |AQ|/|AC|.

The “only if” direction of Exercise 1.4.2 leads to two famous theorems—the
Pappus and Desargues theorems—that play an important role in the foundations
of geometry. We will meet thém in more general form later. In their simplest
form, they are the following theorems about parallels.

1.4.3 (Pappus of Alexandria, around 300 CE) Suppose that 4,8,C,D,E, F lie al-
ternately on lines .% and .# as shown in Figure 1.14.

M

F B D

Figure 1.14: The parallel Pappus configuration

Use the Thales theorem to show that if AB is parallel to ED and FE is
parallel to BC then

04| _ |oc|
loF| ~ |oD|’

Deduce from Exercise 1.4.2 that AF is parallel to CD.

1.5 Similar triangles 13

1.4.4 (Girard Desargues, 1648) Suppose that points 4,B,C,A",B/,C’ lie on con-
current lines &, .#,.4" as shown in Figure 1.15. (The triangles ABC and
A'B'C' are said to be “in perspective from 0.”)

‘Figure 1.15: The parallel Desargues configuration

Use the Thales theorem to show that if AB is parallel to A’B’ and BC is
paralle] to B'C’, then

j04] _ |oA'
joc] ~ Toc|

Deduce from Exercise 1.4.2 that AC is parallel to A'C’

1.5 Similar triangles

Triangles ABC and A'B'C’ are called similar if their corresponding angles
are equal, that is, if

angle at A = angle at A’ (= « say),
angle at B = angle at B’ (= J say),
angle at C = angle at C' (= ¥ say).

It turns out that equal angles imply that all sides are proportional, so we

‘may say that one triangle is a magnification of the other, or that they have

the same “shape.” This important result extends the Thales theorem, and
actually follows from it. §



L dudigniedge and compass

Why similar triangles have proportional sides

Imagine moving triangle ABC so that vertex A coincides with A’ and sides
AB and AC lie on sides A’B’ and A'C’, respectively. Then we obtain the
situation shown in Figure 1.16. In this figure, b and ¢ denote the side
lengths of triangle ABC opposite vertices B and C, respectively, and »’ and
¢’ denote the side lengths of triangle A’B'C’(=AB'C’) opposite vertices B’
and C', respectively.

Figure 1.16: Similar triangles

Because BC and B'C' both meet AB’ at angle 8, they are parallel, and
so it follows from the Thales theorem (Section 1.3) that

b b—b

¢ cd—c¢'

Multiplying both sides by ¢(c’ — c) gives b(c' —¢) = e(b' —b), that is,
bc’ —be = b’ — cb,

and hence
bd' =¢¥.
Finally, dividing both sides by ¢/, we get
b_ v
e

That is, corresponding sides of triangles ABC and A'B'C’ opposite to the
angles B and y are proportional.

L5 Similar triangles 15

We got this result by making the angles ¢ in the two triangles coincide.
If we make the angles B coincide instead, we similarly find that the 'sides
opposite to ¢ and y are proportional. Thus, in fact, all corresponding sides
of similar triangles are proportional. g

This consequence of the Thales theorem has many implications. In
everyday life, it underlies the existence of scale maps, house plans, engi-
neering drawings, and so on. In pure geometry, its implications are even
more varied. Here is just one, which shows why square roots and irrational
numbers turn up in geometry.

The diagonal of the unit square is /2

The diagonals of the unit Square cut it into four quarters, each of which is
a triangle similar to the half square cut off by a diagonal (Figure 1.17)"

S

A s

Figure 1.17: Quarters and halves of the square

Each of the triangles in question has one right angle and two half right
angles, so it follows from the theorem above that corresponding sides of
any two of these triangles are proportional. In particular, if we take the half
square, with short side 1 and long side &, and compare it with the quarter
square, with short side d/2 and long side 1, we get

short 1
long d 1

Multiplying both sides of the;equation by 24 gives 2 = d2, so d — V2. O
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The great, but disturbing, discovery of the Pythagoreans is that V2 is
irrational. That is, there are no natural numbers m and # such v/2 = m /n.

If there are such'm and # we can assume that they have no common
divisor, and then the assumption v2 = m /n implies

2 =m?/n’ squaring both sides
hence  m? =2n? multiplying both sides by n2
hence  m?iseven

hence mis even since the square of an odd number is odd

hence m=21 for some natural number |

hence m? =412 = 2%
hence n? =22
hence n? is even

hence nis even since the square of an odd number is odd.

Thus, m and n have the ooEan. divisor 2, contrary to assumption. Qur
original assumption is therefore false, so there are no natural numbers m
and n such that /2 = m/n. O

Lengths, products, and area

Geometry obviously has to include the diagonal of the unit square, hence
geometry includes the study of irrational lengths. This discovery trou-
bled the ancient Greeks, because they did not believe that irrational lengths
could be treated like numbers. In particular, the idea of interpreting the
product of line segments as another line segment is nof in Euclid. Tt first
appears in Descartes’ Géométrie of 1637, where algebra is used systemat-
ically in geometry for the first time.

The Greeks viewed the product of line segments  and b as the rectan-
8le with perpendicular sides @ and b. If lengths are not necessarily num-
bers, then the product of two lengths is best interpreted as an area, and the
product of three lengths as a volume—but then the product of four lengths
seems to have no meaning at all. This difficulty perhaps explains why al-
gebra appeared comparatively late in the development of geometry. On the
other hand, interpreting the product of lengths as an area gives some re-
markable insights, as we will see in Chapter 2. So it is also possible that

algebra had to wait until the Greek concept of product had exhausted its
usefulness.

1.6 Discussion 17

Exercises

In general, two geometric figures are called similar if one is a magnification of the

other. Thus, two rectangles are similar if the ratio long side

shomt side 18 the same for both.

V241 V21

Figure 1.18: A pair of similar rectangles

1.5.1 Show that u@ = ﬂ and hence that the two rectangles in Figure 1.18
are similar,

1.5.2 Deduce that if a rectangle with long side a and short side b has the same
shape as the two above, then so has the rectangle with long side b and short
side a —2b.

This simple observation gives another proof that 1/2 is irrational:

1.5.3 Suppose that vVZ+1=m /n, where m and n are natural numbers with m as
small as possible. Deduce from Exercise 1.5.2 that we also have /2 + 1 =
n/(m—2n), This is a contradiction. Why?

1.5.4 It follows from Exercise 1.5.3 that v/2+1 is irrational. Why does this imply
that +/2 is irrational?

1.6 Discussion )

Euclid’s Elements is the most influential book in the history of mathemat-
ics, and anyone interested in geometry should own a copy. It is not easy
reading, but you will find yourself returning to it year after year and notic-
ing something new. The standard edition in English is Heath’s translation,
which is now available as a Dover reprint of the 1925 Cambridge Univer-
sity Press edition. This reprint is carried by many bookstores; I have even
seen it for sale at Los Angeles airport! Tts main drawback is its size—three
bulky volumes—due to the fabt that more than half the content consists of
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We can certainly extend a given rectangle to a square and hence recon-
struct the square on the hypotenuse. The main problem is to reconstruct
the right-angled triangle, from the hypotenuse, so that the other vertex lies
on the dashed line. See whether you can think of a way to do this; a really
elegant solution is given in Section 2.7. Once we have the right-angled
triangle, we can certainly construct the squares on its other two sides—in
particular, the gray square equal in area to the gray rectangle.

Exercises

It follows from the Pythagorean theorem that a right-angled triangle with sides 3
and 4 has hypotenuse V32447 = /25 = 5. But there is only one triangle with
sides 3, 4, and 5 (by the SSS criterion mentioned in Exercise 2.2.2), so putting
together lengths 3, 4, and 5 always makes a righ -angled triangle. This triangle is
known as the (3,4, 5) triangle.

2.5.1 Verify that the (5,12, 13), (8,15,17), and (7,24,25) triangles are right-
angled.

2.5.2 Prove the converse Pythagorean theorem: [f a,b,c >0 and a? 4+ = 2,
then the triangle with sides a,b, ¢ is right-angled.

2.5.3 How can we be sure that _.oum\&m ab,¢ > 0 with a? + b2 = ¢2 actually fit
together to make a triangle? (Hint: Show that o +b>c)

Right-angled triangles can be used to construct certain irrational lengths. For
example, we saw in Section 1.5 that the right-angled triangle with sides 1, 1 has
hypotenuse /2.

2.54 Starting from the triangle with sides 1,1, and v/2, find a straightedge and
compass construction of 1/3,

2.5.5 Hence, obtain constructions of vaforn=2345%,...

2.6 Proof of the Thales theorem

We mentioned this theorem in Chapter 1 as a fact with many interesting
consequences, such as the Eowo&oumhﬁ% of similar triangles. We are now
in a position to prove the theorem as Euclid did in his Proposition 2 of
Book VI. Here again is a statement of the theorem.

The Thales theorem. A line drawn parallel to one side of a triangle cuts
the other two sides proportionally.

2.6 Proof of the Thales theorem 35

The proof begins by considering triangle ABC, with its sides AB and AC
cut by the parallel PQ to side BC (Figure 2.15). Because PQ is parallel to
BC, the triangles POB and PQC on base PQ have the same height, namely
the distance between the parallels. They therefore have the same area.

A

B c
Figure 2.15: Triangle sides cut by a parallel

If we add triangle APQ to each of the equal-area triangles POB and
PQC, we get the triangles AQB and APC, respectively. Hence, the latter
triangles are also equal in area.

Now consider the two triangles—APQ and POB—that make up trian-
gle AQB as triangles with bases on the line AB. They have the same height
relative to this base (namely, the perpendicular distance of Q from AB).
Hence, their bases are in the ratio of their areas:

|AP|  area APQ
|PB| " area POB"

Similarly, considering the triangles APQ and WQQ that make up the triangle
APC, we find that
JAQ| _-area APQ
‘ IOC| " area POC"
Because area PQB equals area PQC, the right sides of these two equations
are equal, and so are their left sideg, That is,

1AP) _ 140)
1PB] "~ Joct

In other words, the line PQ cuts the sides AB and AC wuowc&ow&_%. a
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Exercises

As seen in Exercise 1.3.6, |[AP|/|PB| = |AQ|/|QC| is equivalent to |AP|/|AB| =
|AQ|/|AC]|. This equation is a more convenient formulation of the Thales theorem
if yon want to prove the following generalization:

2.6.1 Suppose that there are several parallels PyQ1, 02,5505 ... to the side BC
of riangle ABC. Show that

APs| _ |AR| _ |aR| _ _ |4B|

AGi] T 1402~ TAa@s] T T jac|

We can also drop the assumption that the parallels E@rmwnm.@..@u ... fall
across a triangle ABC. ‘

2.6.2 If parallels P01, P20, P30 ... fall across a pair of parallel lines % and
# , what can we say about the lengths they cut from .% and .#?

2.7 Angles in a circle

The isoscelés triangle theorem of Section 2.2, simple though it is, has a
remarkable consequence.

Invariance of angles in a circle. If A and B are two points on a circle,

then, for-all points C on one of the arcs connecting them, the angle ACB is .

constant.

To prove invariance we draw lines from A,B,C to the center of the
circle, O, along with the lines making the angle ACB (Figure 2.16).

Because all radii of the circle are equal, |OA| = |OC|. Thus triangle
AOC is isosceles, and the angles @ in it are equal by the isosceles triangle
theorem. The angles B in triangle BOC are equal for the same reason.

Because the angle sum of any triangle is 7 (Section 2.1), it follows
that the angle at O in triangle AOC is 7.~ 2 and the angle at O in triangle
BOCis w—2p. 1t follows that the third angle at O, angle AOB, is 2(a + B),
because the total angle around any point is 27. But angle AOB is constant,
s0 ¢ + B is also constant, and & + 8 is precisely the angle at C. O

An important special case of this theorem is when A, O, and B lie in a
straight line, s0 2(¢+ f8) = 7. In this case, ¢t + 8 = 7/2, and thus we have
the following theorem (which is also attributed to Thales). A

Angle in a semicircle theorem. If A and B are the ends of a diameter of

a circle, and C is any other point on the circle, then angle ACB is a right
angle. U

2.7 Angles in a circle 37

Figure 2.16: Angle &+ § in a circle:

This theorem enables us to solve the problem left open at the end of
Section 2.5: Given a hypotenuse AB, how do we construct the right-angled
triangle whose other vertex C lies on a given line? Figure 2.17 shows how.

_
_
_
_
[
_
t
"
A [ B

Figure 2.17: Constructing a nmm?wbm_& triangle with given hypotenuse
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The trick is to draw the semicircle on diameter AB, which can be done
by first bisecting AB to obtain the center of the circle. Then the point where
the semicircle meets the given line (shown dashed) is necessarily the other
vertex C, because the angle at C is a right angle.

This construction completes the solution of the problem raised at the
end of Section 2.5: finding a square equal in area to a given rectangle.
In Section 2.8 we will show that Figure 2.17 also enables us to construct
the square rovt of an arbitrary length, and it gives a new proof of the
Pythagorean theorem.

Exercises

2.7.1 Explain how the angle in a semicircle theorem enables us to construct a
right-angled triangle with a given hypotenuse AB.

2.7.2 Then, by looking at Figure 2.13 from the bottom up, find a way to construct
a square equal in area to a given rectangle.

2.7.3 Given any two squares, we can construct a square that equals (in area) the
sum of the two given squares. Why?

2.7.4 Deduce from the previous exercises that any polygon may be “squared”;
that is, there is a straightedge and compass construction of a square equal

in area to the given polygon. (You may assume that the given polygon can
be cut into triangles.)

The possibility of “squaring” any polygon was apparently known to Greek
mathematicians, and this may be what tempted them to try “squaring the circle”
constructing a square equal in area to a given circle. There is no straightedge and
compass solution of the latter problem, but this was not known until 1882.

Coming back to angles in the circle, here is another theorem about invariance
of angles:

2.7.5 If a quadrilateral has its vertices on a circle, show that its opposite angles
sum to 7.

2.8 The Pythagorean theorem revisited

In Book VT, Proposition 31 of the Elements, Buclid proves a generalization
of the Pythagorean theorem. From it, we get a new proof of the ordinary
Pythagorean theorem, based on the proportionality of similar triang]es.
Given a right-angled triangle with sides a, b, and hypotenuse ¢, we
divide it into two smaller right-angled triangles by the perpendicular to the
hypotenuse through the opposite vertex (the dashed line in Figure 2.18).

2.8 The Pythagorean theorem revisited 39
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A c1 D ¢y B

Figure 2.18: mzw&ﬁ&:m a right-angled triangle into similar triangles

All three triangles are similar because they have the same angles & and
B. If we look first at the angle e at A and the angle B at B, then

i1
o =
+B 3
because the angle sum of triangle ABC is 7 and the angle at C is n/2. But
then it follows that angle ACD = B in triangle ACD (to make its angle sum
= 7} and angle DCB = q in triangle DCB (to make its angle sum = 7).
Now we use the proportionality of these triangles, calling the side op-
posite ¢ in each triangle “short” and the side opposite 8 “long” for conve-
nience. Comparing triangle ABC with triangle ADC, we get
long side b

—=—, hence b*=cc,.
hypotenuse ¢~ p’ ca

Comparing triangle ABC with triangle DCB, we get

short side

2
hypotenuse

a (5]
=-—=-—, hence a°=cc,.
c a

Adding the values of a2 and 52 just obtained, we finally get
2 2 _ —
a"+b*=cey+ec) = n?#+ )= ¢ because clter=g,

and this-is the Pythagorean theorem. 0
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This second proof is not really shorter than Euclid’s first (given in Sec-
tion 2.5) when one takes into account the work needed to prove the pro-
portionality of similar triangles. However, we often need similar triangles,
so they are a standard tool, and a proof that uses standard tools is generally
preferable to one that uses special machinery. Moreover, the splitting of a
right-angled triangle into similar triangles is itself a useful tool—it enables
us to construct the square root of any line segment.

Straightedge and compass construction of square roots

Given any line segment /, construct the semicircle with diameter [ + 1, and
the perpendicular to the diameter where the segments 1 and ! meet (Figure
2.19). Then the length h of this perpendicular is /1.

=

Figure 2.19: Construction of the square root

To see why, construct the right-angled triangle with hypotenuse  + 1
and third vertex where the perpendicular meets the semicircle. We know
that the perpendicular splits this triangle into two similar, and hence pro-
portional, triangles. In the triangle on the left,

long side I
short side ~ &°
In the triangle on the right,
long side _h
short side ~ 1°
Because these ratios are equal by proportionality of the triangles, we have
L
A

hence A? = [; that is, h = /1. O
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This result complements the constructions for the rational operations
+;—, X, and + we gave in Chapter 1. The constructibility of these and 1/
was first pointed out by Descartes in his book Géométrie of 1637. Rational
operations and v/ are in fact precisely what can be done with straightedge
and compass. When we introduce coordinates in Chapter 3 we will see that
any “constructible point” has coordinates obtainable from the unit length 1
by +,—,x,+, and v/.

Exercises

Now that we know how to construct the +,—, X, =, and +/ of given lengths, we
can use algebra as a shortcut to decide whether certain figures are constructible by
straightedge and compass. If we know that a certain figure is constructible from
the length (1++/5) /2, for example, then we know that the figure is constructible—
period—because the length (1 ++/5)/2 is built from the unit length by the opera-
tions +, X, +, and v/. o

This is precisely the case for the regular pentagon, which was constructed
by Euclid in Book IV, Proposition 11, using virtually all of the geometry he had
developed up to that point. We also need nearly everything we have developed up
to this point, but it fills less space than four books of the Elements!

The following exercises refer to the regular pentagon of side 1 shown in Figure
2.20 and its diagonals of length x.

Figure 2.20: The regular pentagon
L

2.8.1 Use the symmetry of the regular pentagon to find similar triangles implying

thatis, x¥* —x—1 =0,

2.8.2 By finding the positive root of this quadratic equation, show that each diag-
onal has length x = (1++/5)/2.

2.8.3 Now show that the regular gentagon is constructible.



