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Abstract

We develop a theorem for determining the p-colorability of any (m, n)
torus knot. We also prove that any p-colorable (m, n) torus knot has
exactly one p-coloring class. Finally, we show that every p-coloring of the
braid projection of an (m, n) torus knot must use all of the p colors.

1 Introduction

This paper has two main results; both of which are proved from algebraic and
geometric perspectives. The first result is a theorem specifically determining the
p-colorability of any (m,n) torus knot. This result has been highly investigated
and proven in limited subcases. It has been shown that a (m,m− 1) torus knot
is always p-colorable for p equal to m or m − 1 depending on which is odd [6]
[14]. Another proven result is that a (2, n) torus knot is always p-colorable for
p equal to n and a (3, n) torus knot is always 3-colorable if n is even [14]. A
result similar to ours was also stated as a lemma without proof in [4].

Our second major result shows that any p-colorable (m,n) torus knot has
only one p-coloring class. The number of p-coloring classes for a knot is an
invariant under the Reidemeister moves. A general result investigating colorings
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of torus knots by finite Alexander quandles appears in [3]. Our result is a special
instance of this result, however, we use only simple techniques while the proof of
the more general result involves more complicated strategies. p-coloring classes
have also been previously been investigated in relationship to pretzel knots by
[5].

Using our second main result, we were also able to show a minor result
concerning the distribution of colors in a p-coloring of a torus knot. We showed
that any p-coloring of the braid representation of an (m,n) torus knot must
use each of the p colors. Distribution of colors in p-colorings of knots has been
previously investigated with the Kauffman-Harary Conjecture. This conjecture
is concerned with the distribution of colors in a Fox p-coloring of an alternating
knot with prime determinant. Asaeda, Przytcki, and Sikora prove the Harary-
Kauffman Conjecture is true for pretzel knots and Montesinos knots in [2].

In Section 2 we present basic definitions of knots, p-colorability, p-coloring
classes, p-nullity, and torus knots. Even though p-colorability can be defined
for any integer p ≥ 2, in this paper we will only address cases where p is an odd
prime.

In Section 3 we discuss an algebraic method for finding the determinant, and
hence the p-colorability, of any (m,n) torus knot. We then use braid represen-
tations to examine this idea geometrically.

In Section 4we address the p-coloring classes of torus knots. We thoroughly
examine this topic and its relationship to torus knots, finally determining that
all torus knots have a single p-coloring class. This is done using both algebraic
and geometric methods. The geometric method gives rise to an additional result
concerning the distribution of colors in any p-coloring of a torus knot.

This work is the result of a NSF funded Research Experience for Undergrad-
uates project at James Madison University, and was written by the first and
second authors under the direction of the third.

2 Definitions and Background Information

We begin by presenting some basic definitions and background pertaining to
knots, colorability, and the class of torus knots. See also [1] and [10].

2.1 p-colorability and the dihedral group

One of the main goals of knot theory is to be able to distinguish between all
knots. One way to accomplish this goal is by examining a knot’s p-colorability
as seen in Definition 1.

Definition 1. Given a prime number p > 2 we say that a projection of a knot
K is p-colorable if every strand in the projection can be labeled using numbers
0 to p− 1, with at least 2 of the labels distinct, so that at each crossing we have

2x− y − z = 0 mod p, (1)

where x is the overstrand and y and z are the understrands of the crossing.
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Since p-colorability is preserved by Reidemeister moves, it is a knot invariant.
Hence, we say that a knotK is p-colorable if any projection ofK is p-colorable. A
3-colorable knot is called tricolorable. In this case the condition in Equation (1)
is equivalent to having all strands the same color, or all strands different colors,
at each of the crossings of K [10]. An example of a 3-coloring is shown in Figure
1.

Figure 1: A 3-coloring of the knot 61

The Wirtinger presentation of a knot K is obtained by labeling the strands
of an oriented projection of K with s1, s2, · · · , sm. Maintaining the right hand
rule, place a loop xi around each strand si such that the loop begins and ends
at a base point in the knot complement. In Figures 2 and 3 the loop xi begins
at a base point above the figure, travels to the tail of the arrow representing
xi, and follows that arrow beneath strand si before returning to it origin above
the figure. The set of loops {x1, x2, · · · , xn} = Q makes up the Wirtinger
presentation for K. The loops surrounding any crossing of K will have one of
the two following relations:

x−1
j xkxjx

−1
i = 1 (see Figure 2)

and therefore at such a crossing we have

x−1
j xkxj = xi.

Or,
x−1

j xixjx
−1
k = 1 (see Figure 3)

and therefore at such a crossing we have

x−1
j xixj = xk.

The difference between these two relations is due entirely to choice of orientation.
Therefore, any crossing where xj is the loop around the overstrand and xi, xk

are the loops around the understrands gives rise to the relation x−1
j xixj = xk

[13].
It can be shown that the p-colorability condition in Equation (1) comes from

the relation between the dihedral group

D2p = 〈a, b | ap = 1 = b2, b−1ab = a−1〉

and the knot group

π0(S3 −K) = 〈x1, x2, · · · , xm ∈ Q | x−1
j xixj = xkat each crossing of K〉,
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Figure 2: Wirtinger loop near
a right handed crossing.
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Figure 3: Wirtinger loop
near a left handed crossing.

where Q is the Wirtinger presentation of the knot.

Theorem 1. Let K be an oriented knot. Then K is p-colorable if and only if
the map

θ : π0(S3 −K) → D2p

defined by θ(xi) = bai mod p is a well-defined homomorphism.

Proof. (⇒) Given that K is p-colorable, we must show that θ is well-defined
in the sense that it respects the relations of the knot group. In the exponents
of the computations below we will refer to i mod p simply as i. If xi, xj , xk

surround a crossing of K and xj is the loop around the overstrand, we have:

θ(x−1
i xjxi) = θ(xi)−1θ(xj)θ(xi) (θ is a homomorphism)

= (bai)−1bajbai (definition of θ)

= a−ib−1bajbai

= aj−ibai

= ba2i−j (relation in D2p)

= bak (p-coloring condition)
= θ(xk).

(⇐) We will show that the conditions that make θ a well-defined homomor-
phism imply the p-colorability conditions. In the exponents of the computations
below we will refer to i mod p simply as i.

θ(x−1
i xjxi) = θ(xk) =⇒ (bai)−1bajbai = bak

=⇒ a−ib−1bajbai = bak

=⇒ aj−ibai = bak

=⇒ aj−ibaib−1 = bakb−1

=⇒ aj−2i = a−k

=⇒ 2i− j − k = 0 mod p.
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2.2 p-coloring classes

Let Gp(K) be the set of all p-colorings for a knot K. Note that Gp(K) is empty
if K is not p-colorable. We wish to count the number of p-colorings in Gp(K)
that differ by more than just a permutation of the colors. To do this precisely we
will redefine p-colorability so that we can partition Gp(K) with an equivalence
relation. The following definition is clearly equivalent to Definition 1.

Definition 2. Suppose SK is the set of all strands of K. A p-coloring of a knot
K is a map

γ : SK → Zp

satisfying the condition that

2γ(sj)− γ(si)− γ(sk) = 0 mod p

for all si, sj , sk ∈ Sk at a crossing of K, where sj is the overcrossing strand and
si, sk are the undercrossing strands.

For all γ, δ ∈ Gp(K), consider the relation ∼ defined by

γ ∼ δ ⇐⇒ γ = ρ ◦ δ for some permutation ρ : Zp → Zp. (2)

Theorem 2. The relation ∼ defined in Equation (2) is an equivalence relation
on Gp(K).

Proof. Suppose γ, δ, and α are p-colorings in Gp(K). We have three things to
show about the relation ∼:

Reflexive: Define ρ to be the identity map, which is obviously one-to-one and
onto and thus a permutation of Zp. Then γ = ρ ◦ γ for all γ ∈ Gp(K). Hence,
γ ∼ γ for all γ ∈ Gp(K).

Symmetric: Assume that γ ∼ δ. Then there exists a permutation ρ such that
γ = ρ ◦ δ. Therefore ρ−1 ◦ γ = δ. Since ρ is one-to-one and onto, so is ρ−1.
Therefore we have δ ∼ γ.

Transitive: Assume that γ ∼ δ and δ ∼ α. Thus there exist permutations ρ and
ρ′ such that γ = ρ ◦ δ and δ = ρ′ ◦ α. Therefore γ = ρ ◦ (ρ′ ◦ α) = (ρ ◦ ρ′) ◦ α.
Since ρ and ρ′ are both one-to-one and onto, their composition is one-to-one
and onto as well. Therefore we have γ ∼ α.

Definition 3. The p-coloring class of γ ∈ Gp(K) is the set γ̄ = {δ ∈ Gp|δ ∼ γ}.
Two p-colorings are said to be equivalent if they are in the same p-coloring class,
and fundamentally different if they are in different p-coloring classes.

Definition 4. The set of p-coloring classes for a given knot K will be denoted
by Cp(K). The number of p-coloring classes for K will be denoted by |Cp(K)|.

For example, in Figure 4 the first two 3-colorings of knot 935 are equivalent.
In the same figure the third 3-coloring of 935 is fundamentally different from
each of the first two colorings (and therefore |C3(935)| is at least 2).
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(1)                                       (2)                                        (3)

Figure 4: Colorings (1) and (2) of the 935 knot are equivalent, while coloring
(3) is fundamentally different from colorings (1) and (2).

2.3 Determinants, crossing matrices, and p-nullity

A p-coloring of a knot projectionK determines a linear equation at each crossing
of K. The matrix for the resulting system of linear equations is called the
crossing matrix of K. Any one row and column can be eliminated from the
crossing matrix in order to create a minor crossing matrix. Every minor crossing
matrix of any projection of K will have the same determinant (up to sign). The
absolute value of this determinant is what we call the determinant of the knot
[10]. The determinant of a knot K completely determines the prime numbers
p for which K is p-colorable. (Although non-prime p can be considered, in this
paper we will only consider prime p-colorings.)

Theorem 3. Suppose p is a prime number. A knot K is p-colorable if and only
if p divides det(K).

For a proof of Theorem 3 see [10]. Notice that a knot is p-colorable for some
prime p if and only if det(K) 6= 1.

Definition 5. The p-nullity of a knot K is the dimension of the null space of
its associated crossing matrix modulo p.

It should be noted that in some papers, p-nullity is defined as the dimension
of the nullity of the minor crossing matrix but in this paper we will be referring
to the nullity of the complete crossing matrix.

It can be shown that pr gives the number of different ways to assign p colors
to a knot K according the rules of p-colorings, including the p trivial colorings.
Thus pr − p is the number of non-trivial p-colorings [10].

Theorem 4. Given a knot K with p-nullity r, the number of different, but not
necessarily fundamentally different, p-colorings of K is given by pr − p [10].

In fact, the number of fundamentally different p-colorings of a knot K can
be discerned from K ′s p-nullity. It is clear that a knot has p-nullity 1 if and
only if it has only the trivial colorings [5]. As p-nullity of K increases, |Cp(K)|
also increases (see Table 1 and Table 2). A specific equation relating p-nullity
and |Cp(K)| can be found in [5].

Theorem 5 is obtained directly from Tables 1 and 2.
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p-nullity |Cp(K)|
1 0
2 1
3 4
4 14
5 51
6 202

Table 1: The number of p-coloring
classes for a given p-nullity r (the ta-
ble holds for any p provided p ≥ r).

3-nullity |C3(K)|
1 0
2 1
3 4
4 13
5 40
6 121

Table 2: The number of 3-coloring
classes for a 3-nullity r knot (note
the tables differ only when p < r).

Theorem 5. A knot K has p-nullity 2 if and only if |Cp(K)| = 1. [5]

For Example, using Figure 4 we previously determined that |C3(935)| ≥ 2.
By computing the nullity of the crossing matrix for 935 and using Table 2 it can
be easily shown that |C3(935)| = 4 (see [5]).

2.4 Torus knots

All mathematical knots can be broken into three disjoint groups: torus, satellite
and hyperbolic. In this paper we will be examining p-colorings of torus knots.
A torus knot is a knot that lies on an unknotted torus without crossing over or
under itself as it lies on the torus; for example, see the knot in Figure 5.

Figure 5: Trefoil knot on a torus.

A torus knot Tm,n is completely characterized by the number of times m
that it circles around the meridian of the torus and the number of times n that
it circles around the longitude of the torus. For example, the trefoil knot in
Figure 5 is the torus knot T3,2. A torus knot Tm,n is a knot and not a link if
and only if m and n are relatively prime. The torus knot Tm,n is equivalent to
the torus knot Tn,m [1].

A braid is a set of n strings which are attached to a horizontal bar at the
top and the bottom. Each string in a braid must always ”head downwards”;
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in other words, each string will intersect a horizontal plane exactly once. If we
connect each of the strands on the top bar with the corresponding strands on the
bottom bar we obtain a knot. It is known that every knot can be represented by
a braid, called the braid representation of the knot [1]. For example, the trefoil
knot shown in Figure 5 has the braid representation shown in Figure 6.

Figure 6: The braid representation of a trefoil knot.

The braid word for a braid is a description of the projection of the braid when
the projection is arranged so that no two crossings occur at the same height.
For every crossing where strand i crosses strand i+ 1, the crossing is written as
σi if the crossing is positive (i.e. if σi crosses over σi+1) and σ−1

i if the crossing
is negative (i.e. if σi+1 crosses over σi). For example, the braid representation
of the knot 61 in Figure 7 has braid word σ2

3σ2σ
−1
3 σ−1

1 σ2σ
−1
1 .

Figure 7: The braid representation of 61.

The torus knot Tm,n can be drawn as the closure of the n-strand braid word

(σ1σ2 · · ·σn−2σn−1)m.

We will refer to the word (σ1σ2 · · ·σn−2σn−1) as the base for the braid word
of Tm,n. Figure 6 shows the braid representation of the (2,3) torus knot, also
known as the trefoil. The braid presented in this figure has the full braid word
(σ1σ2)2. The base for this braid word is σ1σ2.

A cycle is a single completion of the base for the braid word of a knot Tm,n,
as shown in Figure 8. For the duration of the paper, any braid representation of
a knot Tm,n is considered to have n strands and m cycles. We will also consider
the 0th strand to be the strand on the far left of the braid representation.
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Figure 8: Two cycles of a braid.

3 p-Colorability of Torus Knots

Our first main result completely characterizes the p-colorability of torus knots.
Note that if Tm,n is a torus knot, then m and n are relatively prime, and thus
m and n cannot both be even.

Main Theorem 1. Suppose Tm,n is a torus knot and p is prime.

i) If m and n are both odd, then Tm,n is not p-colorable.
ii) If m is odd and n is even, then Tm,n is p-colorable if and only if p|m.
iii) If m is even and n is odd, then Tm,n is p-colorable if and only if p|n.

In Section 3.1 we will prove this theorem from an algebraic perspective, by
using the Jones polynomial to find det(Tm,n). In Section 3.2 we will revisit
Main Theorem 1 from a more geometric perspective, and exhibit a particular
p-coloring for every p-colorable torus knot.

Results similar to those in Main Theorem 1 were stated without proof by
Asami and Satoh in [4].

3.1 Using determinants to determine p-colorability

In this section we will prove Main Theorem 1 using the following theorem, which
describes the determinant of any torus knot Tm,n.

Theorem 6. Given any torus knot Tm,n, we have

det(Tm,n) =

 1, if m and n are both odd
m, if m is odd and n is even
n, if m is even and n is odd.

Main Theorem 1 will follow immediately from Theorem 6 and Theorem 3.
Our proof of Theorem 6 will use knot polynomials. Given a knot K, the

Alexander polynomial is constructed using the orientation of K and manipulat-
ing the crossings of a projection of K in to solve a basic equation. Another
polynomial, the Jones polynomial, is formed by looking at the projection of K
and manipulating each crossing using a series of Skein relations [1].
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Proof. Given a knot K, it is well known that det(K) = |∆K(−1)|, where ∆K(t)
is the Alexander polynomial of K (see [11]). It is also known that if VK(t) is the
Jones polynomial of K, then ∆K(−1) = VK(−1) (see [8]). Therefore we know
that for any knot K, det(K) = |VK(−1)|.

The equation for the Jones polynomial of the torus knot Tm,n is (see [9])

VTm,n
(t) =

t(m−1)(n−1)/2(tm+n − tn+1 − tm+1 + 1)
(1− t2)

. (3)

To find |VTm,n
(−1)| we must first reduce the expression in Equation (3). Clearly

t = −1 is always a root of tm+n − tn+1 − tm+1 + 1 regardless of the parity of
m and n (as long as they are not both even). We will use synthetic division to
remove a factor of t+1 from this polynomial. Without loss of generality we will
assume m > n. Depending on the parity of m and n, there are three cases.

Case 1. Suppose m and n are both odd. The synthetic division in this case is
as follows. (The labels at the top indicate the degree m+ n, m+ 1, and n+ 1
coefficients.)

(m + n) (m + 1) (n + 1)

1 0 0 · · · 0 −1 0 0 · · · 0 −1 0 0 · · · 0 1
−1 −1 1 · · · −1 1 0 0 · · · 0 0 1 −1 · · · 1 −1

1 −1 1 · · · −1 0 0 0 · · · 0 −1 1 −1 · · · 1 0︸ ︷︷ ︸
even

︸ ︷︷ ︸
even

This leaves us with the polynomial

(tm+n−1 − tm+n−2 + · · · − tm+1) + (−tn + tn−1 − · · ·+ 1). (4)

Therefore, the Jones polynomial is now

t(m−1)(n−1)/2[(tm+n−1 − tm+n−2 + · · · − tm+1) + (−tn + tn−1 − · · ·+ 1)]
(1− t)

.

By substituting −1 for t (keeping in mind that m and n are both odd) we get

det(Tm,n) = |VTm,n
(−1)| =

∣∣∣∣ (±1)[(−1)(n− 1) + (1)(n+ 1)]
2

∣∣∣∣ = 1.

Case 2. Suppose m is even and n is odd. The only difference between this
case and the first case is that the difference between m+ 1 and n+ 1 is odd in
this case. However, this difference only determines the number of zeros in the
middle block of the synthetic division calculation above, so we obtain the same
quotient as in Equation (4), and the same form of Jones polynomial. In this
case, however, when we substitute −1 for t we get

det(Tm,n) = |VTm,n
| =

∣∣∣∣ (±1)[(1)(n− 1) + (1)(n+ 1)]
2

∣∣∣∣ = n.
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Case 3. Suppose m is odd and n is even. In this case, the synthetic division is
as follows:

(m + n) (m + 1) (n + 1)

1 0 0 · · · 0 −1 0 0 · · · 0 −1 0 0 · · · 0 1
−1 −1 1 · · · 1 −1 2 −2 · · · −2 2 −1 1 · · · 1 −1

1 −1 1 · · · 1 −2 2 −2 · · · −2 1 −1 1 · · · 1 0︸ ︷︷ ︸
odd

︸ ︷︷ ︸
odd

︸ ︷︷ ︸
odd

By completing our synthetic division we will obtain the polynomial

(tm+n−1−tm+n−2+· · ·+tm+1)+(−2tm+2tm−1−· · ·−2tn+1)+(tn−tn−1+· · ·+1).

When we substitute −1 in for t in this polynomial we get

(1)(n− 1) + (2)(m− n) + (1)(n+ 1) = 2m.

Therefore the determinant in this case is

det(Tm,n) = |VTm,n(−1)| =
∣∣∣∣ (±1)(2m)

2

∣∣∣∣ = m.

3.2 Using braid representations to determine p-colorability

The determinant argument in Section 3 proves Main Theorem 1, but in this
section we present another proof from a geometric perspective. Some of the
techniques in this subsection will be particularly useful in Section 4 when we
investigate the number of p-coloring classes of torus knots and in addition these
methods set the stage for our results in Corollary 8.

Before we begin our proof, we need to build up a basic framework of defini-
tions and properties.

Definition 6. Given a p-colored braid representation of a knot K, the jth color
array of K is the element of (Zp)n whose ith component is the color of the ith

strand of the braid representation of K after j cycles.

For a knot K to be p-colorable it is a necessary and sufficient condition that
the initial color array of its braid representation be exactly the same as its final
color array.

Let (c0, c1, · · · , cn−1) be the jth color array for the braid representation of
some knot K, and consider the map φ : (Zp)n → (Zp)n defined by

φ(c0, c1, · · · , cn−1) = (2c0 − c1, 2c0 − c2, · · · , 2c0 − cn−1, c0). (5)

Notice that φ is the map that, given the jth color array of a knot K, returns the
(j + 1)st color array according the rules of p-colorability, as seen in Figure 9.

We also define the map φj to be the composition of j copies of φ. Notice
that φj : (Zp)n → (Zp)n is then the map defined by

11



.   .   .

.   .   .

 0                    1                       2                                                        n-2                   n-1 c                   c            c                               c           c

2c - c     2c - c                      2c - c       2c - c        c    
0       1             0       2                                            0       n-2               0       n-1             0

Figure 9: The action of φ on the jth color array of Tm,n.

φj( initial color array of K) = jth color array of K.

A p-coloring of any knot K is entirely determined by the initial color array of a
braid representation for K. Furthermore, for a knot K to be p-colorable, it is
a necessary and sufficient condition that we have φm = id when applied to the
initial color array of the braid representation.

We now consider a second n-tuple that can be defined from the braid repre-
sentation of a p-colored knot K. The color variance between any two adjacent
strands in the projection colored with ci and cj respectively is cj − ci mod p.
(Note: We consider the far left and far right strands to be adjacent.)

Definition 7. Given a p-colored braid representation of a knot K, the jth

variance vector of Tm,n is the element of (Zp)n whose ith component is the color
variance between the (i− 1)th and ith strands after j cycles.

The 0th variance vector of K is referred to as the initial variance vector. A
constant variance vector is a variance vector V = (v0, v1, · · · , vn−1) where v0 =
v1 = · · · = vn−1. If (c0, c1, · · · , cn−2, cn−1) is the jth color array for some knot
Tm,n, then the jth variance vector for Tm,n is

(v0, v1, · · · , vn−2, vn−1) = (c1 − c0, c2 − c1, · · · , cn−1 − cn−2, c0 − cn−1). (6)

We will let ψ : (Zp)n → (Zp)n denote the map that takes as input the jth

variance vector of a knot K and returns the (j + 1)st variance vector. By
Equation (5) and (6) we have:

ψ(v0, v1, · · · , vn−2, vn−1) = ((2c0 − c2)− (2c0 − c1), (2c0 − c3)− (2c0 − c2),
· · · , c0 − (2c0 − cn−1), (2c0 − c1)− c0

= (c1 − c2, c2 − c3, · · · , cn−1 − c0, c0 − c1)
= (−v1,−v2, · · · ,−vn−1,−v0).

Figure 10 shows how Equation (7) looks as we move from the jth to the (j+1)th

variance vector. In this figure, the color variance vi between the (i − 1)st and
ith strands is shown between those two strands.

We define ψj : (Zp)n → (Zp)n to be the composition of j copies of ψ. Since
for every application of ψ to (v0, v1, · · · , vn−1), all entries get multiplied by −1

12



.   .   .

.   .   .

v         v                                    v         v

-v          -v                                 - v        -v

0                  1                                                                 n-2              n-1

1                      2                                                                 n-1             0

Figure 10: The action of ψ on the jth variance vector of Tm,n.

and move over one position to the left while wrapping around, we have that
ψj(v0, v1, · · · , vn−1) acts such that for all i ∈ {0, 1, · · · , n− 1}

vi −→ (−1)jvi+j mod n. (7)

In a more general form this means that

ψj(v0, v1, · · · , vn−1) =
{

(vj , vj+1, · · · , v0, v1, · · · , vj−1), if j is even
(−vj ,−vj+1, · · · ,−v0,−v1, · · · ,−vj−1), if j is odd,

where all subscripts are taken modulo n.
We now have the basic definitions we need to give an alternate proof of Main

Theorem 1.

Proof. We will consider two cases. First, we will consider the case where m is
even and n is odd (without loss of generality this will also prove the case where
m is odd and n is even). In this case we will exhibit a specific p-coloring of Tm,n

for every prime p that divides n. Second, we will consider the case where both
m and n are odd, and show that there is no p-coloring of Tm,n for any prime
number p.

Case 1. Suppose m is even and n is odd, and that p divides n. In order to show
that Tm,n is p-colorable we will exhibit a p-coloring of Tm,n that we will call the
main p-coloring of Tm,n.

Since p divides n there exists r ∈ Z+ such that n = rp. Consider the braid
representation of Tm,n with n strands and m cycles whose initial, or 0th, color
array M is the n-tuple whose entries are the series 0, 1, · · · , p−2, p−1, repeated
r times:

M = (0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1). (8)

Using Equation (5) we can deduce that the 1st color array of Tm,n is

φ(M) = φ(0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1)
= (2(0)− 1, 2(0)− 2, · · · , 2(0)− (p− 1), 2(0)− 0,

2(0)− 1, 2(0)− 2, · · · , 2(0)− 0, · · · , 2(0)− (p− 1), 0)
= (−1,−2, · · · ,−(p− 1), 0,−1,−2, · · · , 0, · · · ,−(p− 1), 0)
= (p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0).
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Similarly, the 2nd color array of Tm,n is

φ2(M)
= φ(φ(M))
= φ(p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0)
= (2(p− 1)− (p− 2), 2(p− 1)− (p− 3), · · · , 2(p− 1)− 0,

2(p− 1)− (p− 1), 2(p− 1)− (p− 2), 2(p− 1)− (p− 3), · · · ,
2(p− 1)− (p− 1), · · · , 2(p− 1)− 0, (p− 1))

= (p, p+ 1, · · · , 2p− 2, 2p− 1, p, p+ 1, · · · , 2p− 1, · · · , 2p− 2, p− 1)
= (0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1)
= M.

. . . . . .

. . . . . .

. . .

. . .

. . . . . . . . .

0       1       2              p-2    p-1     0      1           p-1           p-2    p-1

p-1    p-2    p-3              1         0    p-1   p-2            0              1      0

0       1       2              p-2    p-1     0      1           p-1           p-2    p-1

Figure 11: The action of φ on M.

See Figure 11 for an illustration of the action of φ and φ2. Since φ2(M) = M
and m is even, we can conclude that φm(M) = M . Since our initial and final
color arrays are the same, we have a p-coloring of the torus knot Tm,n.

Case 2. Suppose m and n are both odd. If we can show that a braid represen-
tation of a knot Tm,n is not p-colorable, then we will have shown that Tm,n is
not p-colorable. Seeking a contradiction we will assume that Tm,n is p-colorable
and then show that its only coloring is the trivial one.

Let C = (c0, c1, · · · , cn−1) be an initial color array for some p-coloring of
Tm,n. Let V = (v0, v1, · · · , vn−1) be the variance vector associated with C.
Since C induces a p-coloring of Tm,n, we have

ψm(v0, v1, · · · , vn−1) = (v0, v1, · · · , vn−1).

Using Equation (7), we can conclude that for any k ∈ Z+, and any i ∈
{0, 1, · · · , n− 1} we have

vi = (−1)kmvi+km mod n. (9)
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In particular, when k = n we have

vi = (−1)nmvi+nm mod n (Equation(9))
= (−1)nmvi (i+ nm modn = i modn)
= −vi (n and m are odd).

But this implies that vi = −vi for all i ∈ {0, 1, · · · , n − 1} . Since vi ∈ Zp

and p is prime (thus odd), this implies that vi must equal 0 for all i. This means
that V is a constant variance vector with variance 0. Hence, C would induce a
trivial p-coloring on Tm,n. Therefore, our assumption that Tm,n is p-colorable
must be incorrect. Thus, Tm,n is not p-colorable.

4 Counting p-Coloring Classes of Torus Knots

Our second main result describes the number of p-coloring classes of any torus
knot Tm,n.

Main Theorem 2. If p is prime and the torus knot Tm,n is p-colorable, then
|Cp(Tm,n)| = 1.

In Section 4.1 we will prove this theorem using braid representations and
the variance vectors introduced in Section 3.2. We also prove a corollary of this
result that is concerned with the distribution of colors in a p-coloring of Tm,n.
In Section 4.2 we will revisit this theorem in the context of crossing matrices
and p-nullity.

Main Theorem 2is a special case of a result found by Asami and Kuga in
[3]. They prove that if a knot Tm,n can be p-colored using a finite Alexander
quandle, it has a total of p2 trivial and non-trivial colorings. If Tm,n cannot
be colored by such a quandle, then it has only the p trivial colorings. It is
important to note that Asami and Kuga only consider the total number of all
p-colorings without distinguishing between equivalent colorings (as in Theorem
4, while we consider equivalence classes of p-colorings.

The distribution of colors used to p-color a knot has been previously exam-
ined by Asaeda, Przytychi and Sikora in [2]. They investigated the Kauffman-
Harary Conjecture in relation to pretzel knots and Montesinos knots. Their
results show that given a knot K of one of these types which is alternating
with prime determinant, any p-coloring of K assigns different colors to different
strands. Hence, any color used in a p-coloring of K is only used once. As we
will see in Corollary 8, the methods of Section 4.1 will show that all p colors
must be used.

4.1 Using braid representations to find |Cp(Tm,n)|
Given a torus knot Tm,n, consider two p-colorings α, β ∈ Gp(Tm,n). We know
α and β are in the same coloring class in C(Tm,n) if α ∼ β as in Equation (2).
Using the braid projection of Tm,n we can be more specific. Let αj

i and βj
i be
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the colors of the ith strand of any braid knot K after j cycles for the p-colorings
α and β, respectively. The condition for α ∼ β from Equation (2) is clearly
equivalent to the condition

αj
i = αk

l ⇐⇒ βj
i = βk

l (10)

for all i, l ∈ {0, 1, . . . , n− 1} and for all j, k ∈ {0, 1, . . . ,m}.
To prove Main Theorem 2 we must show that if Tm,n is p-colorable, then

every p-coloring of Tm,n is equivalent to the main p-coloring of Tm,n that we
defined in Section 3.2 (see Equation (8)). Notice that the initial variance vector
for the main p-coloring of a knot Tm,n as defined in Equation (8) is the constant
variance vector (1, 1, · · · , 1). Our first step in proving Main Theorem 2 will be
to prove the following theorem.

Theorem 7. Suppose Tm,n is a p-colorable torus knot where p is prime, and
consider the n-strand braid representation of Tm,n. If the initial color array
of the p-coloring has a constant variance vector, then that initial color array
induces a p-coloring that is equivalent to the main p-coloring of Tm,n.

Proof. Let C be an initial color array of Tm,n with constant variance vector
(v, v, . . . , v). The for some a ∈ Zp we can write C as

C = (a+ 0v, a+ v, · · · , a+ (n− 2)v, a+ (n− 1)v). (11)

The first color array of Tm,n with this p-coloring is

φ(C) = φ(a, a+ v, · · · , a+ (n− 2)v, a+ (n− 1)v)
= (2a− (a+ v), 2a− (a+ 2v), · · · , 2a− (a+ (n− 1)v), a)
= (a− v, a− 2v, · · · , a− (n− 1)v, a)
= (a+ (n− 1)v, a+ (n− 2)v, · · · , a+ v, a). (12)

Notice that φ reverses the order of the entries in C. Applying φ again, we see
that the second color array is

φ2(C)
= φ(a− v, a− 2v, · · · , a− (n− 1)v, a)
= (2(a− v)− (a− 2v), 2(a− v)− (a− 3v), · · · , 2(a− v)− a, a− v)
= (a, a+ v, · · · , a+ (n− 3)v, a− 2v, a− v)notag (13)
= (a, a+ v, · · · , a+ (n− 3)v, a+ (n− 2)v, a+ (n− 1)v)
= C. (14)

Thus we can see that φ2 = id when applied to color arrays with constant
variance. (Notice the similarity between this proof and the geometric proof
of Main Theorem 1.)

Since p is prime, there exists t ∈ Zp such that a = tv mod p. Thus, C =
(tv, tv+v, tv+2v, · · · , tv+(n−1)v) = (tv, (t+1)v, (t+2)v, · · · , (t+(n−1))v). We
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know if v ∈ Zp/{0} and p is prime, then 〈v〉 = Zp. Therefore the first p entries
of C are distinct elements of Zp. Moreover, since p divides n, C is comprised of
this exact pattern of all of Zp repeated precisely n/p times. Therefore,

C = (c0, c1, · · · , cp−2, cp−1, c0, c1, · · · , cp−1, · · · , cp−2, cp−1) (15)

where c0, c1, · · · , cp−1 repeats n/p times. Since c0, c1, · · · , cp−1 are distinct, we
know that for i ∈ {0, 1, · · · , p− 1} we have

ci = cj ⇐⇒ i = j. (16)

Using the notation in Equation (16), and the results in Equations (12)
and (14), we see that the jth color array for the p-coloring induced by the
initial color array C is

φj(C) =
{

(c0, c1, · · · , cp−2, cp−1, c0, c1, · · · , cp−1, · · · , cp−2, cp−1), if j is even
(cp−1, cp−2, · · · , c1, c0, cp−1, cp−2, · · · , c0, · · · , c1, c0), if j is odd.

On the other hand, from the geometric proof of Main Theorem 1 we know
that the jth color array for the main p-coloring induced by the initial color array
M from Equation (8) is

φj(M) =
{

(0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1), if j is even
(p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0), if j is odd.

We wish to prove that C and M induce equivalent p-colorings in terms of
the condition in Equation (10). Let πi : (Zp)n → (Zp) be the ith projection
map, and let φj

i = πi ◦ φj : (Zp)n → (Zp). Notice that φj
i takes in an initial

color array and returns the color of the ith strand of the jth color array of
the induced p-coloring. From the expression for φj(C) above, we see that for
j ∈ {0, 1, · · · ,m} and i ∈ {0, 1, · · · , n− 1} we have

φj
i (C) =

{
ci mod p, if j is even

cp−1−i mod p, if j is odd. (17)

Similarly, from the expression for φj(M) above, we see that

φj
i (M) =

{
i mod p, if j is even

p− 1− i mod p, if j is odd. (18)

It is now easy to see from Equations (16), (17), and (18) that we have

φj
i (M) = φk

l (M) ⇐⇒ φj
i (C) = φk

l (C)

for j, k ∈ {0, 1, · · · ,m} and i, l ∈ {0, 1, · · · , n− 1}. Therefore by Equation (10)
we know that C and M induce equivalent p-colorings on Tm,n.

We will now use Theorem 7 to prove Main Theorem 2. The key will be to
show that there cannot be a p-coloring of Tm,n that does not have a constant
variance vector.
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Proof. Suppose Tm,n is a p-colorable torus knot, and consider the n-strand
braid representation of Tm,n. By Main Theorem 1 we can assume without loss
of generality that n is odd and m is even, and that p divides n.

Seeking a contradiction, assume that |Cp(Tm,n)| > 1. Specifically, assume
there is a p-coloring γ ∈ Gp(Tm,n) that is fundamentally different from the main
p-coloring of Tm,n. Let G = (g0, g1, · · · , gn−2, gn−1) be the initial color array for
γ, and let V = (v0, v1, · · · , vn−2, vn−1) = (g1− g0, g2− g1, · · · , gn−1− gn−2, g0−
gn−1) be the initial variance vector for γ. Using ψ as defined in Equation (7)
we can apply ψq to V to get the qth variance vector of γ:

ψq(V ) =
{

(vq, vq+1, · · · , v0, v1, · · · , vq−1), if q is even
(−vq,−vq+1, · · · ,−v0,−v1, · · · ,−vq−1), if q is odd.

In the above equation, all subscripts should be taken mod n.
Let r be the smallest positive integer for which V partitions into s repeating

sections of length r. Note that 1 ≤ r ≤ n and that n = rs. Since by hypothesis
γ is not equivalent to the main p-coloring of Tm,n, Theorem 7 tells us that the
variance vector V is not constant. Therefore we have r > 1.

Since m is even, we know from Equation (5) that

φm(V ) = (vm, vm+1, · · · , v0, v1, · · · , vm−1).

In other words, φm turns the initial variance vector V into the vector where all
entries have been shifted to the left m positions and wrapped around. Because
m is the number of cycles in our braid representation, and γ is a p-coloring of
Tm,n, we must have ψm(V ) = V . In order for this to occur, ψm must shift V
over by some multiple of r, the length of a repeating section. Therefore we must
have m = kr for some k ∈ Z+.

We have now shown that n = rs, m = kr, and r > 1; these facts imply that
gcd (m,n) ≥ r > 1. But this contradicts our assumption that Tm,n is a knot and
not a link. Therefore, there cannot exist a p-coloring γ that is fundamentally
different from the main coloring, and hence we must have |Cp(Tm,n)| = 1.

Corollary 8. Every p-coloring of a braid projection of knot Tm,n must use all
p colors.

Proof. This follows directly from Main Theorems 1 and 2, since the main p-
coloring of Tm,n uses all p colors, and every p-coloring that is equivalent to the
main coloring must also use all p colors.

4.2 Using p-nullity to find |Cp(Tm,n)|
We now revisit Main Theorem 2 from a linear algebra perspective. By Theorem
5 we can show that a knot K has only one p-coloring class by showing that K
has p-nullity 2. Therefore Main Theorem 2 is equivalent to Theorem 9.

Theorem 9. The p-nullity of any p-colorable torus knot Tm,n is 2.
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By Main Theorem 1 we know that if Tm,n is p-colorable then m and n have
different parity. We will prove Theorem 9 in the case where the larger of m and
n is odd. (The other case is left to a future paper, as it is less systematic than
this case.) Our strategy will be to reduce the general crossing matrix for Tm,n

in this case. The notation of circulant matrices will simplify this process.
A circulant matrix is a square matrix of the form shown in Equation (19).

The entries in each row of C are identical to the entries in the previous row,
except that they are moved over one position to the right and wrapped around.
Notice that a circulant matrix is completely determined by its first row [7].

C = Circ(c1, c2, · · · , cn) =


c1 c2 · · · cn
cn c1 · · · cn−1

...
...

...
c2 c3 · · · c1

 . (19)

With this notation we are ready to prove the special case of Theorem 9.

Proof. Without loss of generality we will assume throughout this proof that we
have m > n. We also assume the special case where m is odd and n is even (see
question (3) in Section 5. The choices of labelings of crossings and strands in
Figures 12 and 13 induce a particularly nice crossing matrix M for Tm,n:

M =



I A
S I T

S I T
. . . . . .

...
S I T

S B


(20)
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(n-3)m+1
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(n-1)m

Figure 12: labeling of torus
strands
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Figure 13: labeling of torus
crossings
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The matrix M in Equation (20) is an m(n− 1)×m(n− 1) matrix consisting of
square blocks of size m. Specifically, I represents the m ×m identity matrix,
and S, T , A, and B represent the following m×m circulant matrices:

S = Circ( 0 0 · · · 0 0 1 ),

T = Circ( 0 0 · · · 0 0 −2 ),

A = Circ( 0 0 · · · 0 1 −2 ),

B = Circ( 1 0 · · · 0 0 −2 ).

In order to determine the p-nullity ofM we will reduceM to upper triangular
form. By looking at the expressions for M and S, we see that row Rm+1 is the
first row of M whose leading 1 is not on the diagonal. Our first sequence of
row operations will reduce M to a matrix whose upper left square block of size
(n− 1)m− 1 is the identity matrix. For m+ 1 ≤ k ≤ (n− 1)m− 1, we reduce
as follows:

Rk =
{

Rk −Rk−1 if k = 1 modm
Rk −Rk−m−1 if k 6= 1 modm (21)

The sequence of reductions in (21) results in the following reduced matrix:

M ′ =


I K1

I K2

. . .
...

I Kn−2

RT


In this matrix, the form of each m×m block Ki depends on whether i is even
or odd, as follows:

Ki =

{
Circ( 0 · · · 0 1 −2 2 · · · −2 ), if i is odd

Circ( 0 · · · 0 −1 2 −2 · · · −2 ), if i is even.︸ ︷︷ ︸
m−n

︸ ︷︷ ︸
n

To find the nullity of the reduced crossing matrix M ′, it suffices to examine the
lower right corner block RT . It turns out that it is simpler to work with the
transpose R = (RT )T of this block. The form of this residual matrix R is as
follows:

R = Circ(1,−2, · · · , 2,−2, 1,︸ ︷︷ ︸
n+1

0, · · · , 0︸ ︷︷ ︸
m−n−1

). (22)

Clearly the nullity of the crossing matrix M will be the nullity of the residual
matrix R. We will begin our reduction of R by reducing the first m − n rows.
To do this we need to define an auxiliary matrix Γ. By the division algorithm
we know that m − n = qn + r for some q, r ∈ Z with 0 ≤ r < n. Define a
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circulant matrix Γ whose initial row has q sections of size n, and a final section
of size r, as follows:

Γ = Circ
(

1 2 · · · 2 2︸ ︷︷ ︸
n

3 4 4 · · · 4 4︸ ︷︷ ︸
n

5 6 6 · · · 6 6︸ ︷︷ ︸
n

· · ·︸ ︷︷ ︸
m−n

)
.

The ith row of Γ will be denoted by (γi,1, γi,2, · · · , γi,m−n). We can now use the
entries of Γ to reduce the first m− n rows of R, as follows:

Ri →
m−n∑
k=i

γikRk.

The sequence of row operations above result in a partially reduced matrix
R′ with an identity block in its upper left corner of size m−n. We can use this
identity block to reduce the first m − n entries of each of the remaining rows,
as follows. Consider the n× n circulant matrix

∆ = Circ(−1, 2,−2, · · · , 2).

We will denote the ith row of ∆ by (δi,1, δi,2, · · · , δi,n). From the form of R
shown in Equation 22 it is clear that we can reduce the bottom left corner of
R′ by the following sequence of row operations:

Rm−n+j =


Rm−n+j + 2(

j∑
k=1

δkjRk) if j ≤ m− n

Rm−n+j + 2(
m−n∑
k=1

δkjRk) if j > m− n

(23)

We now have a further reduced matrix R′′. It remains only to reduce the
entries of R′′ on the right hand side of the block. this rectangle is an n × m
block. This can be done using the following sequence of row operations: for
m− n+ 1 ≤ j ≤ m− 2, perform the operation in Equation (24) to row Rj and
then the operation in Equation (25) to every row Ri with 1 ≤ i ≤ j − 1 and
with j + 1 ≤ i ≤ m.

Rj =
{
Rj −Rj+2 if j is even
Rj +Rj+1 if j is odd (24)

Ri = Ri − rijRj (25)

The row operations above leave us with the following upper-trianglular ma-
trix R′′′:

R′′′ =



1 −(m− 1) m− 2
1 −(m− 2) m− 3

. . .
...

...
1 −3 2

1 −2 1
m m
0 0


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By assumption we know that Tm,n is p-colorable and m is odd, and therefore by
Main Theorem 1 we know that p divides m. Therefore the matrix R′′′ clearly
has p-nullity 2, and thus the torus knot Tm,n must have p-nullity 2.

5 Further Questions

(1) We noticed in Section 4.1 that the main coloring of Tm,n not only uses all of
the colors but each color is used the same number of times as all other colors.
What is the significance of this color distribution and what other knots have a
similar color distribution?

(2) The idea of a variance vector was also introduced in Section 3.2 and used
extensively for the geometric proof of both Main Theorems 1 and 2. Can this
idea be applied other types of knots, especially those whose braid word is some
power of a base word?

(3) Our reduction of M in Section 4.2 is applied to a specific case of Tm,n.
We found that Equation (21) can actually be applied to any knot Tm,n where
without loss of generality m is odd and n is even. We found that if m > n and
m is even then

R = Circ(1,−2, · · · , 2,−1,︸ ︷︷ ︸
n+1

0, · · · , 0︸ ︷︷ ︸
m−n−1

).

We then found that although the reduction process of R seems similar to the
one shown in Section 4.2, the process breaks down into an unwieldy number of
cases. We would be interested in finding a generalized reduction for this matrix.

(4) How can we apply the concept of p-coloring classes to other types of knots
in order to categorize their p-colorability?
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