p-Coloring Classes of Torus Knots

Anna-Lisa Breiland *
Layla Oesper ${ }^{\dagger}$
Laura Taalman ${ }^{\ddagger}$

Abstract

We develop a theorem for determining the p-colorability of any (m, n) torus knot. We also prove that any p-colorable (m, n) torus knot has exactly one p-coloring class. Finally, we show that every p-coloring of the braid projection of an (m, n) torus knot must use all of the p colors.

MR Subject Classifications: 57M27, 05C15
Keywords: torus knot, colorability, braid word, variance

1 Introduction

Our first result is a theorem specifically determining the p-colorability of any (m, n) torus knot. It has been previously shown that a $(m, m-1)$ torus knot is always p-colorable for p equal to m or $m-1$ depending on which is odd (see [5] and [10]). Another proven result is that a $(2, n)$ torus knot is always p-colorable for p equal to n and a $(3, n)$ torus knot is always 3 -colorable if n is even [10]. A result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m, n) torus knot has only one p-coloring class. A general result investigating colorings of torus knots by finite Alexander quandles appears in [2]. Our result is a special instance of this result; however, we present a proof using only elementary techniques. p-coloring classes have also previously been investigated in relationship to pretzel knots by [4].

Using our second result, we were also able to show a minor result concerning the distribution of colors in a p-coloring of a torus knot. We showed that any p-coloring of the braid representation of an (m, n) torus knot must use each of the p colors. Distribution of colors in p-colorings of knots has been

[^0]previously investigated with the Kauffman-Harary Conjecture. This conjecture is concerned with the distribution of colors in a p-coloring of an alternating knot with prime determinant. Asaeda, Przytcki, and Sikora prove the HararyKauffman Conjecture is true for pretzel knots and Montesinos knots in [1].

2 Notation

For this paper we will define a knot diagram to be the projection of a knot from 3 -space to the plane, where appropriate gaps are left at intersections to show which parts of the knot pass over other parts. We will also define a strand to be any connected component of a knot diagram.

Let $G_{p}(K)$ be the set of all p-colorings for a knot diagram K. Note that $G_{p}(K)$ is empty if K is not p-colorable. We wish to count the number of p colorings in $G_{p}(K)$ that differ by more than just a permutation of the colors. To do this precisely, suppose \mathcal{S}_{K} is the set of all strands of K. A p-coloring of a knot diagram K is a map $\gamma: \mathcal{S}_{K} \rightarrow \mathbb{Z}_{p}$ satisfying the condition that $2 \gamma\left(s_{j}\right)-\gamma\left(s_{i}\right)-\gamma\left(s_{k}\right)=0 \bmod p$ for all $s_{i}, s_{j}, s_{k} \in \mathcal{S}_{k}$ at a crossing of K, where s_{j} is the overcrossing strand and s_{i}, s_{k} are the undercrossing strands. We also require that at least 2 of of the colors assigned to s_{i}, s_{j}, s_{k} be relatively prime. It is an easy exercise to see that the relation \sim defined by $\gamma \sim \delta \Longleftrightarrow$ $\gamma=\rho \circ \delta$ for some permutation $\rho: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ for $\gamma, \delta \in G_{p}(K)$ is an equivalence relation on $G_{p}(K)$.

The p-coloring class of $\gamma \in G_{p}(K)$ is the set $\bar{\gamma}=\left\{\delta \in G_{p} \mid \delta \sim \gamma\right\}$. Two p-colorings are said to be equivalent if they are in the same p-coloring class, and fundamentally different if they are in different p-coloring classes. The set of p-coloring classes for a given knot K will be denoted by $C_{p}(K)$. The number of p-coloring classes for K will be denoted by $\left|C_{p}(K)\right|$. It happens that this definition of p-coloring classes corresponds directly to the $\bmod p$ rank discussed in chapter 3 of [8].

Let $T_{m, n}$ represent the torus knot characterized by the number of times m that it circles around the meridian of the torus and the number of times n that it circles around the longitude of the torus. $T_{m, n}$ is a knot (rather than a 2 component link) if and only if m and n are relatively prime. A braid is a diagram of n strings which are attached to a horizontal bar at the top and the bottom. Each string in a braid can only intersect a horizontal plane exactly once. Connecting each of the strands on the top bar with the corresponding strands on the bottom bar will yield a knot, known as the closure of the braid. It is known that every knot is the closure of some braid (see chapter 3 of [8]). For example, the trefoil knot is the closure of the braid shown in Figure 1.

The torus knot $T_{m, n}$ can be drawn as the closure of the n-strand braid word $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2} \sigma_{n-1}\right)^{m}$. We will refer to the word $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2} \sigma_{n-1}\right)$ as the base for the braid word of $T_{m, n}$, and say that a cycle is a single completion of the base for the braid word of a knot $T_{m, n}$. For the duration of the paper, any braid representation of a knot $T_{m, n}$ is considered to have n strands and m cycles, where the $0^{\text {th }}$ strand is the strand on the far left of the braid representation.

Figure 1: The braid whose closure is the trefoil knot.

$3 \quad p$-Colorability of Torus Knots

Since $T_{m, n}$ is equivalent to $T_{n, m}$, the following theorem completely characterizes the p-colorability of torus knots.

Theorem 1. Suppose $T_{m, n}$ is a torus knot and p is prime.
i) If m and n are both odd, then $T_{m, n}$ is not p-colorable.
ii) If m is odd and n is even, then $T_{m, n}$ is p-colorable if and only if $p \mid m$.

Note that if $T_{m, n}$ is a torus knot, as opposed to a link, then m and n are relatively prime, and thus m and n cannot both be even. Results similar to those in Theorem 1 were stated without proof by Asami and Satoh in [3].

It is well known that if p is a prime number, then a knot K is p-colorable if and only if p divides $\operatorname{det}(K)$ (see chapter 3 of [8]). We will prove Theorem 1 by using the Alexander polynomial to show that $\operatorname{det}\left(T_{m, n}\right)$ is given as in the following lemma.

Lemma 1. Given any torus $k n o t T_{m, n}$, we have

$$
\operatorname{det}\left(T_{m, n}\right)=\left\{\begin{aligned}
1, & \text { if } m \text { and } n \text { are both odd } \\
m, & \text { if } m \text { is odd and } n \text { is even }
\end{aligned}\right.
$$

Proof. Given a knot K, it is well known that $\operatorname{det}(K)=\left|\Delta_{K}(-1)\right|$, where $\Delta_{K}(t)$ is the Alexander polynomial of K (see [9]). It is also known that the Alexander polynomical for a knot $T_{m, n}$ has the following formula

$$
\begin{equation*}
\Delta_{T_{m, n}}(t)=\frac{\left(t^{m n}-1\right)(t-1)}{\left(t^{m}-1\right)\left(t^{n}-1\right)} \tag{1}
\end{equation*}
$$

Therefore we can directly calculate the Alexander polynomial and hence the determinant of $T_{m, n}$.

Case 1. Suppose m and n are both odd. Then, $\operatorname{det}\left(T_{m, n}\right)=\Delta_{T_{m, n}}(-1)=$ $\frac{(-2)(-2)}{(-2)(-2)}=1$.

Case 2. Suppose m is odd and n is even.

$$
\begin{aligned}
\operatorname{det}\left(T_{m, n}\right) & =\Delta_{T_{m, n}}(-1) \\
& =\frac{(m n+1)+m n-1}{(m+n)-m+n} \text { (L'Hospital's rule) } \\
& =\frac{2 m n}{2 n} \\
& =m
\end{aligned}
$$

4 Counting p-Coloring Classes of Torus Knots

Our second result shows that every p-colorable torus knot has only one p-coloring class.

Theorem 2. If p is prime and $T_{m, n}$ is any p-colorable torus knot, then we have $\left|C_{p}\left(T_{m, n}\right)\right|=1$.

Theorem 2 is a special case of a result found by Asami and Kuga in [2]. They prove that if a knot $T_{m, n}$ can be p-colored using a finite Alexander quandle, it has a total of p^{2} trivial and non-trivial colorings. If $T_{m, n}$ cannot be colored by such a quandle, then it has only the p trivial colorings. It is important to note that Asami and Kuga only consider the total number of all p-colorings without distinguishing between equivalent colorings, while we consider equivalence classes of p-colorings, or p-coloring classes.

To prove Theorem 2 it suffices to show that if $T_{m, n}$ is p-colorable, then every p-coloring of $T_{m, n}$ is equivalent. To this end, in Section 4.1 we will exhibit a specific p-coloring of $T_{m, n}$ called the main p-coloring. Then in Section 4.2 we will prove Theorem 2 by showing that all p-colorings of $T_{m, n}$ are equivalent to the main p-coloring.

4.1 A main p-coloring for every torus knot

Given a torus knot $T_{m, n}$, consider two p-colorings $\alpha, \beta \in G_{p}\left(T_{m, n}\right)$. Let α_{i}^{j} and β_{i}^{j} be the colors of the $i^{\text {th }}$ strand of any braid knot K after j cycles for the p-colorings α and β, respectively. Note that the p-colorings α and β are in the same coloring class in $C\left(T_{m, n}\right)$ if and only if

$$
\begin{equation*}
\alpha_{i}^{j}=\alpha_{l}^{k} \Longleftrightarrow \beta_{i}^{j}=\beta_{l}^{k} \tag{2}
\end{equation*}
$$

for all $i, l \in\{0,1, \ldots, n-1\}$ and $j, k \in\{0,1, \ldots, m\}$.
Given a p-colored braid representation of a $\operatorname{knot} T_{m, n}$, we will say that the $j^{\text {th }}$ color array of $T_{m, n}$ is the element of $\left(\mathbb{Z}_{p}\right)^{n}$ whose $i^{\text {th }}$ component is the color of the $i^{\text {th }}$ strand of the braid representation of $T_{m, n}$ after j cycles. For a knot

Figure 2: The action of ϕ on the $j^{\text {th }}$ color array of $T_{m, n}$.
$T_{m, n}$ to be p-colorable it is a necessary and sufficient condition that the initial color array of its braid representation be exactly the same as its final color array.

Let $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$ be the $j^{\text {th }}$ color array for the braid representation of some knot $T_{m, n}$, and consider the map $\phi:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow\left(\mathbb{Z}_{p}\right)^{n}$ defined by

$$
\begin{equation*}
\phi\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)=\left(2 c_{0}-c_{1}, 2 c_{0}-c_{2}, \cdots, 2 c_{0}-c_{n-1}, c_{0}\right) \tag{3}
\end{equation*}
$$

Notice that ϕ is the map that, given the $j^{\text {th }}$ color array of a knot $T_{m, n}$, returns the $(j+1)^{\text {st }}$ color array according the rules of p-colorability, as seen in Figure 2. Define the map ϕ^{j} to be the composition of j copies of ϕ, or in other words:

$$
\phi^{j}\left(\text { initial color array of } T_{m, n}\right)=j^{\text {th }} \text { color array of } T_{m, n} .
$$

A p-coloring of any knot $T_{m, n}$ is entirely determined by its initial color array in a braid representation for $T_{m, n}$. Furthermore, for a knot $T_{m, n}$ to be p-colorable, it is a necessary and sufficient condition that we have $\phi^{m}=\mathrm{id}$ when applied to the initial color array of the braid representation.

We now consider a second n-tuple that can be defined from the braid representation of a p-colored knot $T_{m, n}$. The color variance between any two adjacent strands in the projection colored with c_{i} and c_{j} respectively is $c_{j}-c_{i} \bmod p$. (We consider the far left and far right strands to be adjacent.) Given a p-colored braid representation of a knot $T_{m, n}$, the $j^{t h}$ variance vector of $T_{m, n}$ is the element of $\left(\mathbb{Z}_{p}\right)^{n}$ whose $i^{t h}$ component is the color variance between the $(i-1)^{\text {th }}$ and $i^{\text {th }}$ strands after j cycles. The $0^{\text {th }}$ variance vector of $T_{m, n}$ is referred to as the initial variance vector. A constant variance vector is a variance vector $V=\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)$ where $v_{0}=v_{1}=\cdots=v_{n-1}$. If $\left(c_{0}, c_{1}, \cdots, c_{n-2}, c_{n-1}\right)$ is the $j^{\text {th }}$ color array for some knot $T_{m, n}$, then the $j^{\text {th }}$ variance vector for $T_{m, n}$ is

$$
\begin{equation*}
\left(v_{0}, v_{1}, \cdots, v_{n-2}, v_{n-1}\right)=\left(c_{1}-c_{0}, c_{2}-c_{1}, \cdots, c_{n-1}-c_{n-2}, c_{0}-c_{n-1}\right) \tag{4}
\end{equation*}
$$

Let $\psi:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow\left(\mathbb{Z}_{p}\right)^{n}$ denote the map that takes as input the $j^{\text {th }}$ variance vector of a knot $T_{m, n}$ and returns the $(j+1)^{\text {st }}$ variance vector. By Equations (3) and (4) we have:

$$
\begin{aligned}
\psi\left(v_{0}, v_{1}, \cdots, v_{n-2}, v_{n-1}\right)= & \left(\left(2 c_{0}-c_{2}\right)-\left(2 c_{0}-c_{1}\right),\left(2 c_{0}-c_{3}\right)-\left(2 c_{0}-c_{2}\right),\right. \\
& \cdots, c_{0}-\left(2 c_{0}-c_{n-1}\right),\left(2 c_{0}-c_{1}\right)-c_{0} \\
= & \left(c_{1}-c_{2}, c_{2}-c_{3}, \cdots, c_{n-1}-c_{0}, c_{0}-c_{1}\right) \\
= & \left(-v_{1},-v_{2}, \cdots,-v_{n-1},-v_{0}\right) .
\end{aligned}
$$

Figure 3: The action of ψ on the $j^{\text {th }}$ variance vector of $T_{m, n}$.
Figure 3 shows how Equation (5) looks as we move from the $j^{\text {th }}$ to the $(j+1)^{\text {th }}$ variance vector. In this figure, the color variance v_{i} between the $(i-1)^{\text {st }}$ and $i^{\text {th }}$ strands is shown between those two strands.

We define $\psi^{j}:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow\left(\mathbb{Z}_{p}\right)^{n}$ to be the composition of j copies of ψ. Since for every application of ψ to ($v_{0}, v_{1}, \cdots, v_{n-1}$), all entries get multiplied by -1 and move over one position to the left while wrapping around, we have that $\psi^{j}\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)$ acts such that for all $i \in\{0,1, \cdots, n-1\}$

$$
\begin{equation*}
v_{i} \longrightarrow(-1)^{j} v_{i+j \bmod n} . \tag{5}
\end{equation*}
$$

In a more general form this means that
$\psi^{j}\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)=\left\{\begin{aligned}\left(v_{j}, v_{j+1}, \cdots, v_{0}, v_{1}, \cdots, v_{j-1}\right), & \text { if } j \text { is even } \\ \left(-v_{j},-v_{j+1}, \cdots,-v_{0},-v_{1}, \cdots,-v_{j-1}\right), & \text { if } j \text { is odd, },\end{aligned}\right.$
where all subscripts are taken modulo n.
Given a p-colorable torus knot $T_{m, n}$, we can assume without loss of generality that m is even and n is odd. We will now exhibit a specific p-coloring of $T_{m, n}$ for every prime p that divides n, called the main p-coloring of $T_{m, n}$. Since p divides n there exists $r \in \mathbb{Z}^{+}$such that $n=r p$. Consider the braid representation of $T_{m, n}$ with n strands and m cycles whose initial, or $0^{\text {th }}$, color array M is the n-tuple whose entries are the series $0,1, \cdots, p-2, p-1$, repeated r times:

$$
\begin{equation*}
M=(0,1, \cdots, p-2, p-1,0,1, \cdots, p-1, \cdots, p-2, p-1) . \tag{6}
\end{equation*}
$$

Using Equation (3) we can deduce that the $1^{\text {st }}$ color array of $T_{m, n}$ is

$$
\begin{aligned}
\phi(M)= & \phi(0,1, \cdots, p-2, p-1,0,1, \cdots, p-1, \cdots, p-2, p-1) \\
= & (2(0)-1,2(0)-2, \cdots, 2(0)-(p-1), 2(0)-0, \\
& \quad 2(0)-1,2(0)-2, \cdots, 2(0)-0, \cdots, 2(0)-(p-1), 0) \\
= & (-1,-2, \cdots,-(p-1), 0,-1,-2, \cdots, 0, \cdots,-(p-1), 0) \\
= & (p-1, p-2, \cdots, 1,0, p-1, p-2, \cdots, 0, \cdots, 1,0) .
\end{aligned}
$$

Note that the $2^{\text {nd }}$ color array of $T_{m, n}$ is

$$
\begin{aligned}
& \phi^{2}(M) \\
& \quad=\phi(\phi(M)) \\
& =\phi(p-1, p-2, \cdots, 1,0, p-1, p-2, \cdots, 0, \cdots, 1,0) \\
& =(2(p-1)-(p-2), 2(p-1)-(p-3), \cdots, 2(p-1)-0 \\
& \quad \quad 2(p-1)-(p-1), 2(p-1)-(p-2), 2(p-1)-(p-3), \cdots, \\
& \quad \quad 2(p-1)-(p-1), \cdots, 2(p-1)-0,(p-1)) \\
& \quad=(p, p+1, \cdots, 2 p-2,2 p-1, p, p+1, \cdots, 2 p-1, \cdots, 2 p-2, p-1) \\
& =(0,1, \cdots, p-2, p-1,0,1, \cdots, p-1, \cdots, p-2, p-1) \\
& =M
\end{aligned}
$$

4.2 Every p-coloring of a torus knot is equivalent to the main p-coloring

To prove Theorem 2 it suffices to show that if $T_{m, n}$ is p-colorable, then every p-coloring of $T_{m, n}$ is equivalent to the main p-coloring of $T_{m, n}$. Notice that the initial variance vector for the main p-coloring of a knot $T_{m, n}$ as defined in Equation (6) is the constant variance vector $(1,1, \cdots, 1)$. Our first step in proving Theorem 2 will be to prove the following lemma.

Lemma 2. Suppose $T_{m, n}$ is a p-colorable torus knot where p is prime, and consider the n-strand braid representation of $T_{m, n}$. If the initial color array of the p-coloring has a constant variance vector, then that initial color array induces a p-coloring that is equivalent to the main p-coloring of $T_{m, n}$.

Proof. Let C be an initial color array of $T_{m, n}$ with constant variance vector (v, v, \ldots, v). The for some $a \in \mathbb{Z}_{p}$ we can write C as

$$
\begin{equation*}
C=(a+0 v, a+v, \cdots, a+(n-2) v, a+(n-1) v) . \tag{7}
\end{equation*}
$$

The first color array of $T_{m, n}$ with this p-coloring is

$$
\begin{align*}
\phi(C) & =\phi(a, a+v, \cdots, a+(n-2) v, a+(n-1) v) \\
& =(2 a-(a+v), 2 a-(a+2 v), \cdots, 2 a-(a+(n-1) v), a) \\
& =(a-v, a-2 v, \cdots, a-(n-1) v, a) \\
& =(a+(n-1) v, a+(n-2) v, \cdots, a+v, a) . \tag{8}
\end{align*}
$$

Notice that ϕ reverses the order of the entries in C. Applying ϕ again, we see
that the second color array is

$$
\begin{align*}
\phi^{2}(C) & \\
& =\phi(a-v, a-2 v, \cdots, a-(n-1) v, a) \\
& =(2(a-v)-(a-2 v), 2(a-v)-(a-3 v), \cdots, 2(a-v)-a, a-v) \\
& =(a, a+v, \cdots, a+(n-3) v, a-2 v, a-v) n o t a g \tag{9}\\
& =(a, a+v, \cdots, a+(n-3) v, a+(n-2) v, a+(n-1) v) \\
& =C \tag{10}
\end{align*}
$$

Thus we can see that $\phi^{2}=$ id when applied to color arrays with constant variance.

Since p is prime, there exists $t \in \mathbb{Z}_{p}$ such that $a=t v \bmod p$. Thus, $C=$ $(t v, t v+v, t v+2 v, \cdots, t v+(n-1) v)=(t v,(t+1) v,(t+2) v, \cdots,(t+(n-1)) v)$. We know if $v \in \mathbb{Z}_{p} /\{0\}$ and p is prime, then $\langle v\rangle=\mathbb{Z}_{p}$. Therefore the first p entries of C are distinct elements of \mathbb{Z}_{p}. Moreover, since p divides n, C is comprised of this exact pattern of all of \mathbb{Z}_{p} repeated precisely $\frac{n}{p}$ times. Therefore,

$$
\begin{equation*}
C=\left(c_{0}, c_{1}, \cdots, c_{p-2}, c_{p-1}, c_{0}, c_{1}, \cdots, c_{p-1}, \cdots, c_{p-2}, c_{p-1}\right) \tag{11}
\end{equation*}
$$

where $c_{0}, c_{1}, \cdots, c_{p-1}$ repeats $\frac{n}{p}$ times. Since $c_{0}, c_{1}, \cdots, c_{p-1}$ are distinct, we know that for $i \in\{0,1, \cdots, p-1\}$ we have

$$
\begin{equation*}
c_{i}=c_{j} \Longleftrightarrow i=j \tag{12}
\end{equation*}
$$

Using the notation in Equation (12), and the results in Equations (8) and (10), we see that the $j^{\text {th }}$ color array for the p-coloring induced by the initial color array C is
$\phi^{j}(C)=\left\{\begin{aligned}\left(c_{0}, c_{1}, \cdots, c_{p-2}, c_{p-1}, c_{0}, c_{1}, \cdots, c_{p-1}, \cdots, c_{p-2}, c_{p-1}\right), & \text { if } j \text { is even } \\ \left(c_{p-1}, c_{p-2}, \cdots, c_{1}, c_{0}, c_{p-1}, c_{p-2}, \cdots, c_{0}, \cdots, c_{1}, c_{0}\right), & \text { if } j \text { is odd. }\end{aligned}\right.$
On the other hand, from Section 4.1 we know that the $j^{\text {th }}$ color array for the main p-coloring induced by the initial color array M from Equation (6) is
$\phi^{j}(M)=\left\{\begin{aligned}(0,1, \cdots, p-2, p-1,0,1, \cdots, p-1, \cdots, p-2, p-1), & \text { if } j \text { is even } \\ (p-1, p-2, \cdots, 1,0, p-1, p-2, \cdots, 0, \cdots, 1,0), & \text { if } j \text { is odd. }\end{aligned}\right.$
We wish to prove that C and M induce equivalent p-colorings in terms of the condition in Equation (2). Let $\pi_{i}:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow\left(\mathbb{Z}_{p}\right)$ be the $i^{t h}$ projection map, and let $\phi_{i}^{j}=\pi_{i} \circ \phi^{j}:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow\left(\mathbb{Z}_{p}\right)$. Notice that ϕ_{i}^{j} takes in an initial color array and returns the color of the $i^{\text {th }}$ strand of the $j^{\text {th }}$ color array of the induced p coloring. From the expression for $\phi^{j}(C)$ above, we see that for $j \in\{0,1, \cdots, m\}$ and $i \in\{0,1, \cdots, n-1\}$ we have

$$
\phi_{i}^{j}(C)=\left\{\begin{align*}
c_{i} \bmod p, & \text { if } j \text { is even } \tag{13}\\
c_{p-1-i} \bmod p, & \text { if } j \text { is odd. }
\end{align*}\right.
$$

Similarly, from the expression for $\phi^{j}(M)$ above, we see that

$$
\phi_{i}^{j}(M)=\left\{\begin{align*}
i \bmod p, & \text { if } j \text { is even } \tag{14}\\
p-1-i \bmod p, & \text { if } j \text { is odd }
\end{align*}\right.
$$

It is now easy to see from Equations (12), (13), and (14) that we have

$$
\phi_{i}^{j}(M)=\phi_{l}^{k}(M) \Longleftrightarrow \phi_{i}^{j}(C)=\phi_{l}^{k}(C)
$$

for $j, k \in\{0,1, \cdots, m\}$ and $i, l \in\{0,1, \cdots, n-1\}$. Therefore by Equation (2) we know that C and M induce equivalent p-colorings on $T_{m, n}$.

We will now use Lemma 2 to prove Theorem 2. The key will be to show that there cannot be a p-coloring of $T_{m, n}$ that does not have a constant variance vector.

Proof. Suppose $T_{m, n}$ is a p-colorable torus knot, and consider the n-strand braid representation of $T_{m, n}$. By Theorem 1 we can assume without loss of generality that n is odd and m is even, and that p divides n. Seeking a contradiction, assume that $\left|C_{p}\left(T_{m, n}\right)\right|>1$. Specifically, assume there is a p-coloring $\gamma \in$ $G_{p}\left(T_{m, n}\right)$ that is fundamentally different from the main p-coloring of $T_{m, n}$. Let $G=\left(g_{0}, g_{1}, \cdots, g_{n-2}, g_{n-1}\right)$ be the initial color array for γ, and let $V=$ $\left(v_{0}, v_{1}, \cdots, v_{n-2}, v_{n-1}\right)=\left(g_{1}-g_{0}, g_{2}-g_{1}, \cdots, g_{n-1}-g_{n-2}, g_{0}-g_{n-1}\right)$ be the initial variance vector for γ.

Using ψ as defined in Equation (5) we can apply ψ^{q} to V to get the $q^{\text {th }}$ variance vector of $\gamma($ where all subscripts are taken $\bmod n)$:

$$
\psi^{q}(V)=\left\{\begin{aligned}
\left(v_{q}, v_{q+1}, \cdots, v_{0}, v_{1}, \cdots, v_{q-1}\right), & \text { if } q \text { is even } \\
\left(-v_{q},-v_{q+1}, \cdots,-v_{0},-v_{1}, \cdots,-v_{q-1}\right), & \text { if } q \text { is odd. }
\end{aligned}\right.
$$

Let r be the smallest positive integer for which V partitions into s repeating sections of length r. Note that $1 \leq r \leq n$ and that $n=r s$. Since by hypothesis γ is not equivalent to the main p-coloring of $T_{m, n}$, Lemma 2 tells us that the variance vector V is not constant. Therefore we have $r>1$.

Since m is even, we know from Equation (3) that

$$
\phi^{m}(V)=\left(v_{m}, v_{m+1}, \cdots, v_{0}, v_{1}, \cdots, v_{m-1}\right)
$$

In other words, ϕ^{m} turns the initial variance vector V into the vector where all entries have been shifted to the left m positions and wrapped around. Because m is the number of cycles in our braid representation, and γ is a p-coloring of $T_{m, n}$, we must have $\psi^{m}(V)=V$. In order for this to occur, ψ^{m} must shift V over by some multiple of r, the length of a repeating section. Therefore we must have $m=k r$ for some $k \in \mathbb{Z}^{+}$.

We have now shown that $n=r s, m=k r$, and $r>1$; these facts imply that $\operatorname{gcd}(m, n) \geq r>1$. But this contradicts our assumption that $T_{m, n}$ is a knot and not a link. Therefore, there cannot exist a p-coloring γ that is fundamentally different from the main coloring, and hence we must have $\left|C_{p}\left(T_{m, n}\right)\right|=1$.

Because the main p-coloring of a torus knot $T_{m, n}$ uses all p colors, and every p-coloring that is equivalent to the main coloring must also use all p colors, we have the following immediate corollary to Theorem 2.

Corollary 3. Every p-coloring of a braid projection of knot $T_{m, n}$ must use all p colors.

5 Questions for future research

1. What is the significance of the color distribution in Corollary 3 and what other knots have a similar color distribution?
2. Do variance vectors have useful applications to other types of knots, especially those whose braid word is some power of a base word?
3. What other types of p-colorable knots have only one p-coloring class?

References

[1] M. Asaeda, J. Przytycki, and A. Sikora, Kauffman-Harary Conjecture holds for Montesinos Knots, Journal of Knot Theory and its Ramifications, Vol. 13, No. 4 (2004) 467-477.
[2] S. Asami and K. Kuga, Colorings of Torus Knots and their Twist-Spins by Alexander Quandles over Finite Fields, Technical Reports of Mathematical Science, Chiba University, Vol. 20 (2004).
[3] S. Asami and S. Satoh, An Infinite Family of Non-invertible Surfaces in 4-Space, to appear in Bull. London Math. Soc., pre-print at http://www.math.s.chiba-u.ac.jp/~satoh
[4] K. Brownell, K. O'Neil, and L. Taalman, Pretzel Knots and Colorablility, James Madison University (2003), pre-print at http://www.math.jmu.edu/~taal
[5] R. Butler, A. Cohen, M. Dalton, L. Louder, R. Rettberg, and A. Whitt, Explorations into Knot Theory: Colorability, University of Utah (2001).
[6] V. Jones, A Polynomial Invariant for Knots via von Neumann Algebras, Bull. Am. Math. Soc. 12, 103-111, (1985).
[7] W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer-Verlag, New York (1997).
[8] C. Livingston, Knot Theory, The Mathematical Association of America, Washington DC (1993).
[9] K. Murasugi, Knot Theory and its Applications, Birkchäuser, Boston (1996).
[10] Y. Yasinnik, p-Colorability of Torus Knots, Research Science Institute (2000).

[^0]: *Department of Mathematics, Willamette College, Salem, OR 97301; abreilan@willamette.edu
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Pomona College, Claremont, CA 91711; layla.oesper@pomona.edu
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, James Madison University, MSC 7803, Harrisonburg, VA 22801; taal@math.jmu.edu. PLEASE SEND MANUSCRIPT PROOFS TO THIS AUTHOR.

