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1.6 Factoring

1.6.1 Overview

Factoring provides a powerful algebraic tools to analyze where an expression
equals zero. In the previous section, we noted that a product of two factors
can only equal zero if at least one of the factors itself equals zero (see Theo-
rem 1.5.12). More generally, factoring helps us understand the relation between
a product and zero, whether it is greater than or less than zero.

In this section, we will review some strategies for factoring expressions. We
introduce some technological approaches to factoring. Then we review some
strategies that you would have seen in an algebra course. We also use our
knowledge of how factoring to develop meaningful models.

1.6.2 Factoring with Technology

Factoring is a process that is best accomplished using technology. Every tech-
nique that we learn by hand can be accomplished much more quickly and more
reliably by a computer. Once the computer has been programmed correctly, it
doesn’t commit the arithmetic errors that we are prone to make. In a practical
setting, except for simple problems, you will be better off obtaining factors
from a computer algebra system.

A computer algebra system (CAS) is a computer program that is designed
to apply the rules of algebra according to the user’s request. The popular web-
site WolframAlpha (https://www.wolframalpha.com) allows you to ask mathe-
matical questions using natural language. It interprets your request and shows
a variety of mathematical responses that might answer your question. For
example, to factor a polynomial like x3 − 7x + 6, we would submit a request
factor x^3-7x+6. WolframAlpha would give a response that the result is
(x − 1)(x − 2)(x + 3).

WolframAlpha can perform many other basic computations. It is built on
the same CAS as a stand alone application called Mathematica, which is sold
by Wolfram. A web-based system like WolframAlpha has a disadvantage that
we can not create a chain of dependent calculation. Systems like Mathematica
that use scripts or notebooks, on the other hand, do allow for interrelated
calculations. Popular commercially available CAS programs include Wolfram’s
Mathematica and MapleSoft’s Maple. Many college campuses have license
agreements with one of these programs.

A free and open-source alternative CAS is SageMath (http://www.sagemath.
org/). While you can download and use this program on your own computer,
you can also access and use its capabilities through web-access. Similar to
using WolframAlpha to use the power of Mathematica, you can use the power
of SageMath in what are known as SageCells. A SageCell can be accessed
at https://sagecell.sagemath.org. The online version of this text also has live
SageCells embedded as interactive demonstrations.

In SageMath, we can create mathematical objects (like expressions or equa-
tions) and then perform actions on those objects. The creation and naming of
a mathematical object occurs through an assignment. For example, to create
the expression x3 −7x+6 and assign it to a name expr1, we type the command
expr1 = x^3-7*x+6 on its own line. Notice how we must explicity state that
there is multiplication between 7 and x. To create a new expression that is
the factored form and name it expr2, we perform a new assignment where the
value is based on the factoring action applied to expr1. The relevant command
would be expr2 = expr1.factor().
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The SageCell script below illustrates the commands working together. There
are also two commands that show us a nicely formatted version of our expres-
sions for comparison. Be sure to try this script. Push the Evaluate button in
the live online cell, or copy this into a clean SageCell and evaluate it there.
You should see the results:

x3 − 7x + 6

(x + 3)(x − 1)(x − 2)

expr1 = x^3-7*x+6

expr2 = expr1.factor ()

show(expr1)

show(expr2)

Using named expressions is useful when we have additional actions to do
later. For simple problems like this, we can actually skip naming the ex-
pressions. Try changing the script to the following command and re-evaluate:
show( factor(x^3-7*x+6) ). What happens if you don’t include the command
show?

The reverse process of multiplying out a factored expression also is fre-
quently needed. It is also tedious to do by hand and more reliable using a
computer. The relevant command is to expand the expression. Suppose we
want to know what (x + 1)(x + 2)(x + 3)(x + 4) is as a polynomial in standard
form. Using the SageCell script below reveals the answer to be

(x + 1)(x + 2)(x + 3)(x + 4) = x4 + 10x3 + 35x2 + 50x + 24.

Again, notice how the CAS requires that we show explicitly where each mul-
tiplication occurs. What happens if there aren’t parentheses? What do you
think might be happening?

expr1 = (x+1)*(x+2)*(x+3)*(x+4)

expr2 = expr1.expand ()

show(expr1)

show(expr2)

1.6.3 Strategies for Factoring by Hand

Although technology makes factoring fast and simple, we should be prepared
to perform simple factoring by hand. We review some basic strategies for
factoring that you would have learned in an algebra class.

It helps to remember that factoring is the reverse process of the distributive
property of multiplication over addition. That is, when we expand a (b + c) =
ab + ac, we see that ab and ac have the common factor of a from distribution.
If we can identify a common factor, then we can reverse the process and write
our expression as a multiplication over addition of terms.

Example 1.6.1 Factor 4x2 + 6x3.

Solution. Recalling that 4 = 2 · 2 and 6 = 2 · 3, we recognize that the terms
4x2 and 6x3 have a common factor of 2x2:

4x2 + 6x3 = 2x2 · 2 + 2x2 · 3x.

Factoring this out, we have

4x2 + 6x3 = 2x2(2 + 3x).
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�

More advanced factoring approaches often are built on top of this idea. For
example, a method known as factoring by grouping arises by expressing a
sum of terms as a sum of two groups of terms that can be found to have a
common factor. Some cubic polynomials (but not most) can be factored using
this approach.

Example 1.6.2 Use factoring by grouping to factor x3 − 3x2 − 4x + 12.

Solution. The strategy is to group the x3 and x2 terms together and to group
the x and constant terms together,

x3 − 3x2 − 4x + 12 = (x3 − 3x2) + (−4x + 12),

and then factor out common factors. The first group x3 − 3x2 has a common
factor of x2 to give

x3 − 3x2 = x2(x − 3).

The second group −4x + 12 has a common factor of 4 to give

−4x + 12 = 4(−x + 3).

To get a common factor, we should recognize that we should have used a
common factor of −4:

−4x + 12 = −4(x − 3).

We now have groups with a common factor:

x3 − 3x2 − 4x + 12 = (x3 − 3x2) + (−4x + 12)

= x2(x − 3) + −4(x − 3)

= (x2 − 4)(x − 3)

A full factorization would also factor x2 − 4 = (x + 2)(x − 2) to give

x3 − 3x2 − 4x + 12 = (x + 2)(x − 2)(x − 3).

�

In many cases, a mathematical solution to a problem is easier to find when
we anticipate what it should look like. We use this concept to guide us in
factoring quadratic polynomials. Quadratic polynomials result from expanding
a product of the form (ax+b)(cx+d). That expansion is often described using
the acronym FOIL (First-Outside-Inside-Last):

(ax + b)(cx + d) = ac x2 + ad x + bc x + bd = ac x2 + (ad + bc)x + bd.

Notice that in the middle expression, we have four terms, similar to what we
had with cubic polynomials. This means that we might be able to factor if we
can find a clever way to do grouping.

If we want to factor a quadratic expression Ax2 + Bx + C, then we are
looking for values for a, b, c, d so that

Ax2 + Bx + C = (ax + b)(cx + d).

This requires that A = ac, C = bd, and B = ad + bc. A clever observation is
that AC = (ac)(bd) = (ad)(bc), so that we are writing B as a sum of factors
of AC. This will be how we create our grouping.

Example 1.6.3 Factor 2x2 − x − 6.

Solution. We begin by recognizing the coefficients A = 2, B = −1, and
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C = −6. We want to write B = −1 as a sum of factors of AC = −12. Our
strategy is to think through all of the simple factors of −12 and see if any pair
of factors add to −1. What are the factors of −12?

−12 = (−1)(12) = (1)(−12) = (−2)(6) = (2)(−6) = (−3)(4) = (3)(−4)

When we check the sum of those pairs, we find:

−1 + 12 = 11

1 + −12 = −11

−2 + 6 = 4

2 + −6 = −4

−3 + 4 = 1

3 + −4 = −1

In practice, we would likely add the factor pairs in our head rather than write
them down.

Once we find the pair of factors with the correct sum, 3 + −4 = −1, we
expand the term −x as a sum 3x − 4x to rewrite the quadratic as a sum of
four terms that can now be grouped.

2x2 − x − 6 = 2x2 + 3x − 4x − 6

= (2x2 + 3x) + (−4x − 6)

= x(2x + 3) + −2(2x + 3)

= (x − 2)(2x + 3)

We thus have the factors

2x2 − x − 6 = (x − 2)(2x + 3).

�

When using the method of grouping for quadratics, be sure that you con-
sider both positive and negative factors as pairs.

Another example of anticipating the form of a solution occurs when we
know a polynomial’s root. Knowing that a polynomial has a root means that
we also know a factor.

Theorem 1.6.4 Root–Factor Theorem. Suppose p(x) is a polynomial of

degree n for which x = c is a root, p(c) = 0. Then p(x) can be written in a

factored form

p(x) = (x − c) · q(x)

where q(x) is a polynomial of degree n − 1.

If we can find a root to a polynomial, then we know a simple factor. One
way to find the root is by looking at its graph. Knowing the original polynomial
and a factor, we can work out the other polynomial factor. Finding that other
factor corresponds to polynomial division.

Example 1.6.5 Factor the polynomial 6x3 − 5x2 − 17x + 6.

Solution. When we graph the polynomial, we can identify possible roots.
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The graph suggests that there might be a root at x = 2, between -1 and
-2, and between 0 and 1. We verify that x = 2 is a root by substituting that
value into the formula:

6x3 − 5x2 − 17x + 6 = 6(2)3 − 5(2)2 − 17(2) + 6

= 6(8) − 5(4) − 17(2) + 6

= 48 − 20 − 34 + 6

= 0

The factor that corresponds to x = 2 as a factor is x − 2 (because x = 2 is
equivalent to x − 2 = 0). We now know that there is a polynomial q(x) =
ax2 + bx + c with degree 2 so that

6x3 − 5x2 − 17x + 6 = (x − 2) · (ax2 + bx + c).

We find q(x) = ax2 + bx + c by polynomial division. In effect, however, we
are multiplying by this polynomial with unknown coefficients and determining
the coefficient values so that the product equals the original polynomial.

(x − 2) · (ax2 + bx + c) = x · (ax2 + bx + c) − 2(ax2 + bx + c)

= ax3 + bx2 + cx − 2ax2 − 2bx − 2c

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c

Because this product must equal 6x3 − 5x2 − 17x + 6, we have a system of
equations based on matching coefficients:























a = 6

b − 2a = −5

c − 2b = −17

−2c = 6

⇔























a = 6

b = 2a − 5

c = 2b − 17

−2c = 6

Substituting a = 6 into the second equation gives b = 2(6)−5 = 7. Substituting
b = 7 into the third equation gives c = 2(7)−17 = −3. This matches the fourth
equation solved for c. We can therefore write the factorization using the values
of the coefficients for q(x).

6x3 − 5x2 − 17x + 6 = (x − 2)(6x2 + 7x − 3).

We finish the problem by factoring the new quadratic factor. The product
ac = 6(−3) = −18 has factors −18 = (−2)(9) that sum to −2 + 9 = 7. We can
rewrite and group the quadratic to have common factors:

6x2 + 7x − 3 = 6x2 + −2x + 9x − 3
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= (6x2 − 2x) + (9x − 3)

= 2x(3x − 1) + 3(3x − 1)

= (2x + 3)(3x − 1)

Consequently, our final factorization can be written

6x3 − 5x2 − 17x + 6 = (x − 2)(2x + 3)(3x − 1)

The other roots can be found from the factors: x = − 3

2
(from 2x + 3 = 0) and

x = 1

3
(from 3x − 1 = 0). �

1.6.4 Factors for Polynomial Modeling

Polynomials have easily understood behavior based on their factors. The roots
of the factors are exactly the roots of the polynomial. Furthermore, these
roots are the only possible locations where the polynomial might change sign.
It is easy to show that each simple factor changes sign exactly at its root by
solving an inequality directly. Then, knowing the signs of each factor allows
us to determine the sign of the polynomial as a whole, based on the following
theorem.

Theorem 1.6.6 The relation of product of expressions w = u1 · u2 · · · un with

zero is based the relations of the factors:

• The product w = 0 if and only if at least one uk = 0.

• The product w > 0 if and only if all uk 6= 0 and there are an even number

of uk < 0.

• The product w < 0 if and only if all uk 6= 0 and there are an odd number

of uk < 0.

We can analyze the behavior of a polynomial, in terms of its relation to
zero, using the factors. This process is called sign analysis.

1. Find the factored version of the polynomial.

2. Identify the roots of all of the factors and order them on the number line.

3. The roots divide the number line into a collection of intervals. On each
interval between roots, count the number of factors that will be negative.

4. On each interval, if the number of negative factors is even, then the
polynomial will be greater than zero. If the number of negative factors
is odd, then the polynomial will be less than zero.

Sometimes, a polynomial has repeated roots that appear as a factor raised to a
power. When counting factors, the power is used as multiplicity of repetition.

Example 1.6.7 Perform sign analysis of the polynomial

p(x) = x2(x + 2)(2x − 5).

Solution. The polynomial has four factors—x (double), x + 2, and 2x − 5.
The roots of these factors are x = 0, x = −2, and x = 5

2
. We order these roots

graphically on a number line.
x2 0 5

2

Once the roots are ordered on the number line, we can see the intervals of
interest. Intervals represent continuous segments of the number line and are
described as a range from left to right. There are four intervals: (−∞, −2),



1.6. FACTORING 67

(−2, 0), (0, 5

2
), and (5

2
, ∞). On each interval, we can determine the sign of each

factor, illustrated in the table below. Then, when we multiply these factors
together, we find the overall sign of the polynomial. The polynomial is negative
when there is an odd number of negative factors and positive when there is an
even number of negative factors.

Interval x2 x + 2 2x − 5 p(x)

(−∞, −2) (−)2 − − +

(−2, 0) (−)2 + − −

(0, 5

2
) (+)2 + − −

( 5

2
, ∞) (+)2 + + +

Rather than create a table of signs, we can label the signs of the factors
directly on the number line above each interval.

p(x)

x2 0 5

2

(−)2(−)(−) (−)2(+)(−) (+)2(+)(−) (+)2(+)(+)

The table or the number allows us to interpret the relation of the polynomial
with zero. The polynomial is positive (greater than zero) on the intervals
(−∞, −2) and (5

2
, ∞) and negative (less than zero) on the intervals (−2, 0)

and (0, 5

2
). When we look at a graph of the polynomial, we can see that the

graph is above the axis on the outer intervals and below the axis on the inner
intervals.

−4 −2 2 4

−20

20

x

p(x)

�

Performing sign analysis on a polynomial might seem like a silly exercise.
After all, with our graphing calculators and computers, it is easy enough to
graph the polynomial directly and look where the graph is above or below the
axis. It is in the reverse process that we start to see the power.

Suppose that we want to explore a mathematical model for a phenomenon
where we know how a quantity relates with zero on the number line. How-
ever, we would like to have a simple mathematical formula that captures that
relation. By constructing a polynomial with factors that will match the sign
analysis, we can use that polymomial as our model.

Example 1.6.8 A simple model for density-dependent population growth has a
population’s growth rate as positive when the population is between zero and
a carrying capacity and negative when the population is above the carrying
capacity. Create a simple polynomial model that will capture this behavior.

Solution. We will let P be our symbol to represent the value of the popula-
tion. In biology, the carrying capacity is most often symbolized by the symbol
K. The symbol for a quantity’s growth rate is called the derivative with
respect to time and has the symbol dP

dt
. (The goal of calculus is to understand

what this derivative really means.) We want to create a model that describes
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how the growth rate dP

dt
depends on the population P such that this formula

is positive when P is in the interval (0, K) and negative when P is in (K, ∞).
We can start by creating a number line summary of the behavior we want.

Because P < 0 is not physically relevant, the sign used on (−∞, 0) doesn’t
matter. However, since polynomials change sign at roots unless a factor has
an even power, we will choose to make dP

dt
negative when P < 0.

dP

dt

P0 K

− + −

The roots help us know our basic factors. A root at P = 0 corresponds to
a factor of P . A root at P = K corresponds to a factor of P −K. The product
P (P − K), however, would have the opposite signs on the intervals. This is
corrected by multiplying by a third constant factor, −a, where a itself is some
positive constant. This gives us our basic model,

dP

dt
= −aP (P − K).

If we multiply the negative sign by the factor P − K, we obtain an equivalent
model

dP

dt
= aP (K − P ).

The constants a and K become model parameters.
In biology, slightly different model parameters are more commonly used.

We rewrite our factor K − P = K − P K

K
and then factor out the common

factor K We now have a model

dP

dt
= aK P (1 −

P

K
).

The product aK can be replaced by another parameter, r, to obtain

dP

dt
= r P (1 −

P

K
).

The parameter r is called the intrinsic per capita growth rate. This model is
known as the logistic growth rate model for density-dependent growth. �

In our model, we used a factor 1 − P

K
instead of the factor K − P . These

two factors have the same roots. One advantage to a factor like 1 − P

K
is that

the units of P and K cancel so that the factor is dimensionless. Polynomial
models are often written with factors of the form x

a
− 1 or 1 − x

a
where x = a is

the desired root. In particular, a linear model with known x- and y-intercepts
is most easily modeled using factors and does not require finding the slope.

Example 1.6.9 Suppose S is the number of seeds a plant produces and D

is the density of competing plants around it. When there is no competition,
D = 0, the plant can produce its highest output, S = M seeds. When the
competition reach a critical level, D = DM , the plant no longer produces seed,
S = 0. Develop a linear model for how S relates to D for 0 ≤ D ≤ DM .

Solution. A linear model has a single root, which in this modeling scenario

is S = 0 at D = DM . This means we have a factor D − DM or
D

DM

− 1. We

need another constant factor, say A to account for the vertical scale, such as
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the other intercept. Our model has the form

S = A

(

D

DM

− 1

)

.

When we substitute D = 0, we find S = −A = M so that the parameter
A = −M . The model can then be written in terms of the data provided,

S = −M

(

D

DM

− 1

)

= M

(

1 −
D

DM

)

.

DM

M

D

S

�

1.6.5 Summary

1. In practical applications, technology is the most efficient method to factor
expressions. Computer Algebra Systems (CAS) like SageMath provide
tools to perform operations on mathematical objects.

2. The first priority in factoring involves common factors. Grouping terms
sometimes allows us to find common factors among the groups.

3. Quadratic polynomials with integer coefficients Ax2 + Bx + C can be
factored by grouping if you can find factors of AC that add to the value
of B. This is accomplished by rewriting the term Bx as two terms using
the factors and then grouping terms.

4. Knowing a root x = a of a polynomial tells us that x − a is a factor. The
other factor can be found by polynomial division.

5. The factored form of an expression allows us to perform sign analysis.

(a) Identify the roots of all of the factors and order them on the number
line.

(b) The roots divide the number line into a collection of intervals. On
each interval between roots, count the number of factors that will
be negative.

(c) On each interval, if the number of negative factors is even, then
the expression will be greater than zero. If the number of negative
factors is odd, then the expression will be less than zero.

6. Alternatively, knowing the roots and desired results for sign analysis,
we can use a factored polynomial to generate a model for the relation
between two variables.
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1.6.6 Exercises

Use technology to factor the following formulas.

1. x3 + x2 − 5x + 3

2. x4 − 4x3 − 11x2 + 30x

3. x4 + 10x3 + 35x2 + 50 + 24

4. 24x3 + 14x2 − 11x − 6

Use the method of grouping to factor each cubic.

5. x3 − 2x2 + 3x − 6

6. x3 − 5x2 − 3x + 15

7. 4x3 − 12x2 − x + 3

Factor each quadratic polynomial.

8. x2 − 2x − 3

9. x2 − 9x + 20

10. x2 + 4x − 21

11. 2x2 + 3x − 2

12. 2x2 − 7x − 15

13. 6x2 + 11x − 10

For each problem, verify that the given value is a root of the given polynomial.
Use the Root-Factor theorem and polynomial division to factor the polynomial.

14. x3 − 6x2 − x + 30; x = −2

15. x3 − 2x2 − 11x + 12; x = 4

16. 2x3 − x2 − 13x − 6; x = 3

For each factored polynomial, complete sign analysis to describe the intervals
where the polynomial is greater than zero and where it less than zero. Then
compare your results with a graph.

17. 3x(x − 4)

18. 2x(2 − x)(3 − x)

19. x(x + 2)(x − 1)2

20. (x − 4)(2x − 3)(3x + 1)3

21. Find a linear model for the following graph without finding the slope.
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22. Find a linear model for the following graph without finding the slope.
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23. Find a polynomial model for the following graph.
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24. Find a polynomial model for the following graph.
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25. Find a polynomial model for the following graph.
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26. Find a polynomial model for the following graph.
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27. Find a polynomial model for the following graph.
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28. In economics, the demand for a product, which measures the number of
units a company can sell, is related to the price charged to purchase the
product. Let p be the price being charged and let n be the demand or
number of units that are sold. A simple model is that the demand has
a linear relation with the price. Suppose that if the company gave away
product for free, p = 0, the demand is n = 5000. On the other hand, if
the price charged is p = 50, there is no demand, n = 0.

Create a linear model for the demand as it depends on the price.
Then, create a corresponding model for the revenue as it relates to the
price, where the revenue is the price charged times the number of units
sold.

29. Some populations will die off (negative growth rate) unless the size of the
population is above some minimum value. Populations that exhibit this
behavior are said to have the Allee effect. Let K be the population car-
rying capacity and M be the minimum threshold for population growth,
and assume that 0 < M < K.

Create a polynomial model for the population’s growth rate such that
the growth rate is positive for M < P < K and negative for 0 < P < M

and P > K. The growth rate should be zero at P = 0, P = M , and
P = K.

30. Optical tweezers (also called laser tweezers) use a tightly focused laser
beam to create a force on small transparent objects. The force depends
on the location of the object from the center of the beam. When the
object is further from the beam than a particular distance, δ, the force
pushes the object away. When the distance is less than δ, the force pulls
the object toward the center.

Create a polynomial model for the force F as it depends on the position
x of the object. Assume that x = 0 is the center of the tweezers. The
force will have roots at x = ±δ and x = 0. A positive force pushes the
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object to the right and a negative force pushes it to the left. Include a
constant factor k and use dimensionless factors for the roots at x = ±δ.


