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1.7 Exponents, Roots, and Logarithms

Overview. We frequently think of simplifying expressions as looking for op-
portunities to cancel terms. We similarly might think of moving terms to the
opposite side of an equation, but somehow the opposite term moves to the
other side. Although thinking about inverses as opposites can be useful, it is
perhaps difficult to generalize properly. A more productive framework with
which to think about working with expressions and equations is in terms of
operations. We will later generalize the idea of an operation to the mathemat-
ical concept of a function. In that sense, inverse operations will correspond to
inverse functions.

One of the most common areas relating to inverses where novices encounter
trouble is in terms of powers, where the inverse operations are roots and log-
arithms. For example, a common conceptual error is thinking that logarithms
and bases cancel in the same way that factors in fractions cancel. A root is
the inverse operation of raising a quantity to a given power. A logarithm is
the inverse operation of an exponential operation.

In this section, we review the properties of exponents and focus on dis-
tinguishing between the power and exponential operations. We discuss the
concept of inverse operations and introduce roots and logarithms as inverses
to these operations. We learn to apply inverses to simplify expressions and
solve equations involving powers and exponentials.

1.7.1 Properties of Exponents

Do you remember why we have powers as a mathematical notation? When
the power is a positive integer, it is to represent repeated multiplication. For
example, 34 means that we multiply four threes together,

34 = 3 · 3 · 3 · 3.

How did we go from this simple notational convenience to be able to interpret
negative powers or fractional powers or even irrational powers? We make sense
of these more complex ideas by thinking about what properties the notation
should satisfy.

We know that when we multiply and divide by the same number, the net
effect is equivalent to multiplying by 1. We say that the terms cancel. We
should think of these actions as inverse operations. That is, the action of
multiplying a number by 3 and dividing a number by 3 are inverse operations.
If you do them in succession (one after the other), the net effect is equivalent
to having applied no operation at all,

x · 3 ÷ 3 = x.

Extending this idea allows us to simplify repeated factors represented by

powers. How would we simplify
35

32
? If we realize that 35 in the numerator

means that we multiply by five threes and that the 32 in the denominator
means that we divide by two threes, then we recognize that there are two pairs
of inverse operations:

35

32
=

3 · 3 · 3 · 3 · 3

3 · 3
= 3 · 3 · 3 · 3 · 3 ÷ 3 ÷ 3

= 3 · 3 · 3 · (3 ÷ 3) · (3 ÷ 3)
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= 3 · 3 · 3

= 33

The net effect of dividing by 32 is that we removed two of the threes in the

product 35. This is why we say that division causes powers to subtract,
35

32
=

35−2 = 33.
All of the basic properties of powers are motivated by the idea that an

integer power corresponds to repeated multiplication. For each property, can
you think of how it would be a consequence of this idea?

Properties of Powers.

• Zero Power: b0 = 1 for b 6= 0

• Inverse Power: b−x =
1

bx

• Product with Common Base: bx by = bx+y

• Quotient with Common Base:
bx

by
= bx−y

• Power of a power: (bx)y = bxy

• Product with Common Exponent: bx cx = (bc)x

• Quotient with Common Exponent:
bx

cx
=

(

b

c

)x

We illustrate several additional properties in the context of integer powers.
For integer exponents, a power means repeated multiplication (similar to how
multiplication by an integer means repeated addition). So b3 = b · b · b. The
product properties are just about counting.

Example 1.7.1

b3 · b2 = (bbb) · (bb) = b5 = b3+2

(b2)3 = (bb)(bb)(bb) = b2·3

(ab)3 = (ab)(ab)(ab) = (aaa)(bbb) = a3b3

�

The zero power property is necessary for the power of a sum rule to remain
consistent. We know that bx+0 = bx. But the properties of powers also mean
bx+0 = bx · b0. For these to both be true requires bx = bx · b0 or that b0 = 1.

The properties of powers relating to products and quotients behave sim-
ilar to the distributive property of multiplication over addition. This is be-
cause multiplication originates as repeated addition, just as powers originate
as repeated multiplication. However, addition and powers have no convenient
properties. Many mistakes occur when students forget this and imagine that
powers distribute over addition like multiplication. (It doesn’t!)

Example 1.7.2 To illustrate that (a + b)2 6= a2 + b2, consider the numbers
a = 2 and b = 3. The first expression gives

(a + b)2 = (2 + 3)2 = 52 = 25

while the second expression gives

a2 + b2 = 22 + 32 = 4 + 9 = 13.
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The proper way to expand the first expression is to think of the power as
repeated multiplication and apply the distributive property. This is often called
the FOIL method:

(a + b)2 = (a + b)(a + b) = a2 + 2ab + b2.

�

1.7.2 Exponent Operations and Their Inverses

Expressions have a dual interpretation. On the one hand, an expression is
a mathematical object that represents some numerical value. On the other
hand, an expression also represents a sequence of operations that act on other
values. For example, the expression 3x2 + 5 is a formula that for each value
of x represents a particular value. It also describes a sequence of operations:
“Take a value, x. Square it. Multiply by three. Add 5.”

Thinking of powers as operations will require some caution. In the expres-
sion, 23, the numbers 2 and 3 play different roles. The number 2 is called the
base and the number 3 is called the exponent. As an action, the expression 23,
raising 2 to the power 3, can be interpreted in two ways, depending on which
number we think of as being acted on. We could say that take the number 2
and apply the power 3. This is likely the more familiar interpretation. Alter-
natively, we could say that we take the number 3 and apply the base 2. The
second interpretation corresponds to the exponential operation.

Introducing variables might help make this distinction clearer. This corre-
sponds to thinking of the expression as the value of a function. We will let x
represent the number being acted on. The operation of a power 23 corresponds
to f(x) = x3 with x = 2. The same expression interpreted as an exponential
operation would be the formula g(x) = 2x with x = 3. An elementary power

function (applying a power) raises a value to a fixed power, f(x) = xp, for a
constant p. An elementary exponential function (applying a base) uses a
value as the exponent of a fixed base, g(x) = bx, for a constant b.

Power and exponential functions have corresponding inverse operations. A
root provides the inverse operation to an integer power. A logarithm provides
the inverse operation to an exponential. We begin by focusing on powers and
roots.

If we wish to solve the equation xn = 4 where n is a positive integer, we
might graph y = xn and y = 4 and look for where they intersect.
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For even powers n, the equation xn = 4 has two solutions. The graph is
symmetric across the y-axis because the product of an even number of negative
values is positive, (−1)2 = 1. Notice that if we were trying to solve xn = −4,
there would be no solutions when n is even but there would be a single solution
when n is odd. The solution is called the nth root.

Definition 1.7.3 For an integer n > 1, the nth root y = n
√

x is the value such
that yn = x. If n is even, we require x ≥ 0 and y ≥ 0. If n is odd, there is no
restriction. ♦

A root can be written as a fractional power. The properties of exponents
imply that (xp)n = xpn. If p = 1

n , then (x
1

n )n = x. That is, x
1

n = n
√

x. This

equivalence means that for any rational number p = k
n , the power xp can be

computed using integer powers (repeated multiplication) and extracting roots:

x
k

n = ( n
√

x)k.

Note 1.7.4 When the base is positive, then the choice of representation in the
exponent does not matter. Negative values in the base create complications.
For example, we know that a fraction can have multiple representations, like
1

3
= 2

6
= 3

9
. Because (−2)3 = −8, we know that 3

√
−8 = −2. This is equivalent

to saying (−8)1/3 = −2. However, (−8)2/6 is undefined because the 6th root of
−8 is not a real number. On the other hand, it will be true that (−8)3/9 = −2
as well as for any other equivalent fraction with an odd denominator.

We can simplify expressions that have roots and powers applied consecu-
tively. For example,

3
√

a3 takes a value a, and then applies the cubing operation
followed by the cube-root operation. Because these are inverses, we recover the
original value,

3
√

a3 = a.

We must be careful, again, when the inverse operations involve even powers.
For example, the expression

√
a2 does not actually simplify to a in all cases.

If a = −2, then squaring this gives a2 = 4 and then the square root gives√
a2 =

√
4 = 2. In general, when n is an even power, then n

√
an = |a|.

Applying the power first always makes an a positive value, and then the nth
root is also defined to return a positive value.

On the other hand, the expression (
√

x)2 = x rather than |x|. In this
situation, the first operation is the square root which requires that x ≥ 0.
Squaring the square root of x always recovers the value of x.

How would we define a power with an irrational value? We might approx-
imate the irrational power. That is, we find a rational number that is close to
the irrational number and use it instead. This should raise questions. Does
our choice of approximation matter? How close do we need to be? Calculus
helps us here by introducing the idea of limits. Limits will be central to the
ideas of approximation that occur throughout calculus.

Once we know that we can raise any positive base to an arbitrary number
as the exponent, we can think of an exponential as a valid operation for a given
positive base. Typical graphs of y = bx for b > 1 and for 0 < b < 1 are shown
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below. The special case when b = 1 corresponds to a horizontal line and is not
shown.

−4 −2 2 4
b−11

b

b2

b3

x

y
y = bx

−4 −2 2 4
b2b1

b−1

b−2

b−3

x

y
y = bx

The graphs suggest that for any y > 0, the equation bx = y will have a
unique solution x for each value y. The solution is called the logarithm of y
for the base b.

Definition 1.7.5 For any base b with b > 0 and b 6= 1, the logarithm with
base b of a value x > 0 is written logb(x). The value y = logb(x) is defined for
x > 0 as that value y such that by = x. ♦

Notice that both roots and logarithms are defined through the equation
that they solve. We can interpret them as operations that will cancel their
inverse operations. That is, the consecutive operations of an exponential and
a logarithm with the same base cancel one another. In a similar way, a power
and its corresponding root cancel one another, although we will have to be
careful with even powers because of the even symmetry.

Example 1.7.6 Solve 3
√

x = 2.

Solution. The equation 3
√

x = 2 has an isolated cube root on the left. The
inverse operation of the cube root is cubing. Starting with a value x, finding its
cube root, and then cubing the result just gets back to x. We use this inverse
operation in a balanced way to solve the equation.

3
√

x = 2

( 3
√

x)3 = 23

x = 23

The solution is x = 8. �

Example 1.7.7 Solve x4 = 4.

Solution. The equation x4 = 4 has an isolated integer power on the left.
The inverse operation is a fourth root. Because the power is even, there are
two solutions.

x4 = 4
4
√

x4 =
4
√

4

x = ± 4
√

4

Because 4 = 22, we could rewrite this as

x = ±(22)
1

4 = ±2
2

4 = ±2
1

2 = ±
√

2.

�
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Example 1.7.8 Solve log3(x) = 2.

Solution. The equation log3(x) = 2 has an isolated logarithm. The inverse
operation is an exponential with the same base b = 3. We use the function
representation of this operation, exp3(x) = 3x. An equivalent equation is
formed by applying this exponential to both sides of the equation.

log3(x) = 2

exp3(log3(x)) = exp3(2) = 32

x = 9

This is saying that the equation log3(9) = 2 is equivalent to 32 = 9. Notice
that we could have just written down the inverse equation immediately, since
that is how the logarithm is defined. �

Example 1.7.9 Solve log4(x) = 3.

Solution. The equation log4(x) = 3 is defined by the inverse equation 43 = x.
So x = 64. �

Example 1.7.10 Solve 4x = 8.

Solution. The equation 4x = 8 has an isolated exponential. The inverse
operation is a logarithm with the same base b = 4.

4x = 8

log4(exp4(x)) = log4(8)

x = log4(8)

To go further on this problem, we need more properties.
For this particular problem, we can proceed if we recognize that both 4 and

8 are powers of 2. Because 4 = 22 and 8 = 23, we can rewrite our equation as

4x = 8 ⇔ 22x = 23.

This means that 2x = 3 or x = 3

2
. We can verify this, since 43/2 = (

√
4)3 =

23 = 8. That is, log4(8) = 3

2
. �

The previous example illustrated a way that we can simplify a logarithm
when the base and input are both powers of the same value. In that example,
we had log4(8) and the base 4 and input 8 were powers of 2. We used the
equivalence of the equations

x = log4(8) ⇔ 4x = 8

and then rewrote that equation in terms of the common base b to find x.

Example 1.7.11 Simplify log9( 1

27
).

Solution. We start by assigning this value to the variable x so that we have
an equation,

x = log9(
1

27
).

The equivalent equation using an exponential instead of a logarithm is

9x =
1

27
.

We recognize that 9 = 32 and 27 = 33 so that the equation can be rewritten

32x = 3−3.

This means that 2x = −3 or x = −frac32. That is, log9( 1

27
) = − 3

2
�
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We will learn more general techniques for simplifying logarithms later. Most
scientific calculators only have logarithms for base b = 10 and for base b = e.
The logarithm for b = 10 is called the common logarithm and appears on a
calculator with out a base log. The logarithm for b = e is called the natural
logarithm and appears on a calculator as ln. We will later prove that every
logarithm can be found using one of these by the change of base formula

logb(x) =
log(x)

log(b)
=

ln(x)

ln(b)
.

Example 1.7.12 Solve 3x = 5.

Solution. The unknown x has an exponential with base b = 3 operation
acting on it. To isolate the variable, we need to apply the inverse operation to
both sides.

3x = 5

log3(3x) = log3(5)

x = log3(5)

We have solved the equation, but we don’t have a good sense of what that
number might be. We know that 31 = 3 and 32 = 9, so x = log3(5) must
be somewhere between 1 and 2. The change of base formula allows us to
approximate the value on a calculator,

x = log3(5) =
ln(5)

ln(3)
≈ 1.46497.

�

1.7.3 Applications

We encountered equations that require roots and logarithms to solve when
we considered exponential and power function models for data. Recall that a
general power function has the form

f(x) = A xp,

where A and p are the model parameters. A general exponential function

has the form
f(x) = A bx,

where A and b are the model parameters, with b > 0 and b 6= 1.

Example 1.7.13 A colony of bacteria is observed to cover an area of 2.5 mm2.
Six hours later, the colony has expanded to cover a space of 100 mm2. Assuming
that the bacteria is growing according to an exponential growth model, develop
a model for the area of the colony as a function of the time since the first
observation. If the population continues to follow this model, at what time
will the bacteria colony fill a dish with 6000 mm2?

Solution. An exponential model relates the area of the colony C (mm2) as
a function of time t (hours) according to the formula

C = A bt,

where A and b are model parameters to be determined by the data. The first
observation, t = 0 and C = 2.5, corresponds to a parameter equation

2.5 = A b0.
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The second observation, t = 6 and C = 100, corresponds to a parameter
equation

100 = A b6.

Because b0 = 1, the first equation gives A = 2.5. Substituting this into the
second equation gives an equivalent equation

100 = 2.5 b6.

We solve the equation for b by isolating the variable. The expression cur-
rently has a product with 2.5, so we apply the inverse operation of dividing by
2.5 on both sides,

100

2.5
= b6.

The expression now has a power operation, and the inverse is a root,

b =

(

100

2.5

)1/6

=
6
√

40 ≈ 1.84931.

Consequently, our model for the colony area is given by

C = 2.5 · 1.84931t.

To answer the final question, we see that t is unknown but C = 6000.
Substituting this into the model equation, we obtain an equation only involving
t,

6000 = 2.5 · 1.84931t.

To isolate the variable, we first need to divide by 2.5,

6000

2.5
= 1.84931t.

Now, the variable has an exponential operation acting on it. The inverse
operation is a logarithm with base b = 1.84931, so that

t = log1.84931(2400) =
ln(2400)

ln(1.84931)
≈ 12.6595.

The model predicts that the bacteria colony will fill the dish after abou 12.66
hours, which is approximately 12 hours and 40 minutes. �

Example 1.7.14 In the 1930s, a Swiss biologist named Max Kleiber observed
that the metabolic rate of mammals approximately follows a power law relation
with the mass of the animal. Let Q represent the average metabolic rate (in
kJ per day) and let M represent the average mass (in kg). A mouse has an
average mass M = 0.021 kg and an average metabolic rate of Q = 20.9 kJ/day.
A horse has an average mass M = 400 kg and an average metabolic rate of
Q = 32000 kJ/day. Find a power law model that matches this data. Use the
model to predict the metabolic rate for a cat which has an average mass M = 3
kg.

Solution. We start with the model equation, Q = A Mp, with model param-
eters A and p. Using the data allows us to create a system of equations for our
parameters.

(M, Q) = (0.021, 20.9) ⇒ 20.9 = A 0.021p

(M, Q) = (400, 32000) ⇒ 32000 = A 400p
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To solve a system of equations, we solve one equation for one variable. For this
problem, we use the first equation to solve for A:

20.9 = A 0.021p ⇔ A =
20.9

0.021p
.

We now substitute this expression in place of A into the other equation.

32000 =
20.9

0.021p
400p

32000 = 20.9
400p

0.021p
= 20.9

(

400

0.021

)p

To solve for the remaining unknown, we need to apply inverse operations. The
current expression involves multiplication by 20.9, so the inverse operation is
division by 20.9.

32000

20.9
=

(

400

0.021

)p

Now the expression is an exponential of p with base b = 400

0.021
. The inverse

operation is the logarithm,

logb

(

32000

20.9

)

= p.

We use the change of base formula to find the decimal approximation,

p =
ln(32000/20.9)

ln(400/0.021)
≈ 0.744187.

Knowing p, we go back to find the value for A,

A =
20.9

0.021p
≈ 370.45.

Our approximate power law model is therefore Q = 370.45 · M0.744187.
Using the average mass of a cat M = 3, we predict

Q = 370.45 · 30.744187 ≈ 839.067.

The observed metabolic rate for cats is actually Q = 546 kJ/day, which is
lower than predicted. This should not disappoint us too much, as Kleiber’s
law was really based on a regression model for many animals. Some values will
be above the model’s prediction and some will be below. �

1.7.4 Summary

• Properties of exponents are motivated by the idea that integer powers
correspond to repeated multiplication.

• Exponential functions (exponential growth or exponential decay) have
the form f(x) = A · bx, with the independent variable in the exponent.

• Power functions have the form f(x) = A · xp, with the independent
variable as the base of the power.

• Roots, such as the square root or cube root, are inverse operations for
the power operation:

xn = y ⇔ x = n
√

y.
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When n is an even integer, we require x ≥ 0 and y ≥ 0.

• Roots can be written as reciprocal powers:

n
√

x = x1/n.

• Logarithms are inverse operations for the exponential operation, defined
for every base b > 0 and b 6= 1:

bx = y ⇔ x = logb(y).

• The change of base rule allows us to find decimal approximations for any
base using the common or natural logarithm:

logb(x) =
log(x)

log(b)
=

ln(x)

ln(b)
.

1.7.5 Exercises

Identify a property of exponents to rewrite an equivalent expression. Note that
each property can be applied in either direction.

1. 3x+2

2. (2x)3

3. 2x · 3x

4.
x3

43

5.
3u

34

6. 23x

7. A student made a mistake writing 3 · 2x = 6x. What did the student
do? Why was it incorrect?

8. A student made a mistake writing 2x · 3y = 6x+y. What did the
student do? Why was it incorrect?

Find an exact value for each root or logarithm. Do not use a calculator.

9.
√

9a2

10.
3
√

−8a6

11. log2(8)

12. log2( 1

8
)

13. log3( 1

81
)

14. log3(1)

15. log4(2)

16. log4(32)

17. log1/2(4)

18. log1/4(2)

19. log8( 1

2
)

20. log8(16)

21. log25( 1

125
)

Solve the equations.
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22. x7 = 4

23. 3x3 = 8

24. 4
√

x = 3

25. 3 3
√

2x = 4

26. 5x = 10

27. 32x = 4

28. log4(x) = 2

29. log3(2x) = 9

30. 4 log5(x) = 15

31. 3x2 − x6 = 0

32. 4 · x5 = 3

33. 4 · 5x = 3, writing solutions in terms of the natural logarithm ln.

34. 2 · 3−x = 3 · 2x, writing solutions in terms of the natural logarithm
ln. Hint: Find an equivalent equation with a single exponential after
using properties of exponents.

Applications.

35. Find a power law for y as a function of x that includes data (x, y) =
(1, 5) and (x, y) = (4, 10).

36. Find a power law for y as a function of x that includes data (x, y) =
(2, 20) and (x, y) = (4, 5).

37. Find a power law for y as a function of x that includes data (x, y) =
(2, 4) and (x, y) = (20, 8).

38. Find an exponential law for y as a function of x that includes data
(x, y) = (0, 5) and (x, y) = (4, 15).

39. Find an exponential law for y as a function of x that includes data
(x, y) = (0, 5) and (x, y) = (10, 2).

40. Find an exponential law for y as a function of x that includes data
(x, y) = (1, 5) and (x, y) = (6, 10).

41. The average body mass and life span of mammals have been observed
to follow an approximate power law. A mouse has an average body
mass of 0.021 kg and a life span of 1.5 years. A horse has an average
body mass of 400 kg and a life span of 40 years. Find a power function
model for the life span as a function of body mass. Predict the life
span of a typical hare, which has a body mass of 3.4 kg.

42. The fraction of carbon in organic matter that is radioactive (carbon-
14) decays exponentially from the time of death. At the time of death,
the fraction of radiocarbon would be 1.25 parts per trillion. A sam-
ple that is 1000 years old has a fraction of radiocarbon measured at
1.1075 parts per trillion. Model the fraction in parts per trillion as
an exponential function of time since death. Estimate the age of a
sample that has radiocarbon measured at 0.8 parts per trillion.

43. P-32 is a radioactive isotope of phosphorus used in labeling biological
molecules. P-32 has a half-life of 14.29 days. Suppose an experiment
begins with 10 µg of P-32. Find a parametrized model for the mass
(in µg) as a function of time (in days) measured from the start of the
experiment, t 7→ M , in order to determine how much P-32 remains
after 10 days and after 100 days.
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Hint. Create two constraints using t = 0 and t = 14.29.

44. The isotope of plutonium Pu-239 has a half-life of 24,110 years, which
is the time after which half of the mass has decayed. For an initial
mass of 1 kg, how much plutonium remains after 100 years?

45. An exponentially growing population that doubles in size every 5 years
currently has 1000 individuals.

(a) What will the population be in 4 years?

(b) How long does it take for the population to triple?


