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1.8 Logarithms and Their Properties

We previously learned about the algebraic properties of exponents. Because
logarithms are the inverses of exponential operations, they inherit related alge-
braic properties. The properties of logarithms allow us to rewrite expressions
involving products and exponents in new ways.

In this section, we will introduce the properties of logarithms and how they
relate to the properties of exponents. These properties are closely related to the
logarithmic scale. We will learn new methods for solving equations involving
exponentials using the properties of the logarithm. In addition, we will learn
how to rewrite exponential functions in terms of other bases and justify the
change of base formula for logarithms.

1.8.1 The Logarithmic Scale

Historically, the logarithm was invented so that calculations involving multi-
plication and division could be solved using the much simpler operations of
addition and subtraction. Addition and multiplication share many of the same
properties—commutativity, associativity, and the existence of an identity and
inverses. These shared properties suggest that there might be a way to think
about multiplication in terms of addition.

The properties of exponents establish the relationship required to make this
connection. When two numbers can be written as powers of the same base,
say u = bx and v = by, then the product uv can be written as a power of
that base as uv = bx+y. Division u ÷ v can similarly be written as a power,
u ÷ v = bx−y. In this way, multiplication and division of numbers directly
corresponds to addition and subtraction of their associated powers for a given
base.

The logarithm relates a number and its associated power for a given base.
For every number u > 0 and base b > 0 with b 6= 1,

u = bx ⇔ x = logb(u).

We will try to develop an intuition by creating the map between a number and
its logarithm. In the process, we will develop something called a logarithmic
number line or logarithmic scale.

A map is a way of thinking about the relationship between two variables.
We use one variable as the independent variable, or input, for the map. This is
the value we start with. The relation tells us that this value for the independent
variable is associated with a particular value of the dependent variable. The
value of the dependent variable is the output of the map.

To make our example precise, we will create the map for a base b = 2.
However, the process could be done for any base b > 0 with b 6= 1. With a
base b = 2, we find log2(u) by solving the equation 2x = u. The logarithm is
the map u 7→ x. The equation is easy to solve when u is a known power of 2.

1 = 20 ⇔ (u, x) = (1, 0) ⇔ log2(1) = 0

2 = 21 ⇔ (u, x) = (2, 1) ⇔ log2(2) = 1

4 = 22 ⇔ (u, x) = (4, 2) ⇔ log2(4) = 2

8 = 23 ⇔ (u, x) = (8, 3) ⇔ log2(8) = 3
1
2 = 2−1 ⇔ (u, x) = ( 1

2 , −1) ⇔ log2( 1
2 ) = −1

These simple logarithms are illustrated in the following map.
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u
0.5 1 2 4 8

x
-2 -1 0 1 2 3 4 5 6 7 8

log2

Now, instead of drawing two number lines, let us use a single number line
labeling the points with the input above the line and the output below the
line.

u
x
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This relation could be extended to every point on the number line. The
value above the number line is just the value 2x where x is the value below
the number line. Some special values should be explicitly identified. The point
with x = 1

2 corresponds to u = 21/2 =
√

2 ≈ 1.4142. Similarly, the point with

x = 3
2 corresponds to u = 23/2 =

√
8 ≈ 2.8284.

The resulting locations of numbers above the number line is called a loga-

rithmic scale. A more detailed logarithmic scale is provided below. Because
consecutive integers are closer and closer together in a logarithmic scale, the
figure only shows the tick mark location for some of the values.

u

log2(u)
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Figure 1.8.1 Logarithmic scale showing the logarithm base two, b = 2.

In our example, we developed the logarithmic scale using a base b = 2. We
could have done it with any base. The logarithmic scale with base b = 10,
corresponding to the common logarithm, is shown below.

u

log(u)
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-1 0 1

Figure 1.8.2 Logarithmic scale showing the common logarithm, b = 10.

Comparing the logarithmic scales for bases b = 2 and b = 10, you should
notice that the logarithmic scale itself appears to be the same. The only
thing that is different is the scale of the tick marks below the number line
corresponding to the value of the logarithm.

1.8.2 Properties of the Logarithm

When considering the logarithmic scales, we always had logb(1) = 0. This
is because b0 = 1 for every valid base. This creates a mapping from the
multiplicative identity u = 1 to the additive identity x = 0. That is, the value
u = 1 becomes the origin of the logarithmic scale.

In a similar way, because b1 = b, the logarithm will always have logb(b) = 1.
Be careful that you do not think of this as a cancellation. Instead, think of the
logarithmic scale. The value u = 1 sets the origin. The logarithm measures
the position of each number as if using a ruler starting at u = 1. The value
u = b sets the length scale for the ruler.

The core properties of logarithms are summarized below.
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Theorem 1.8.3 Properties of Logarithms. For every base b > 0 with

b 6= 1 and values u > 0 and v > 0, logarithms satisfy the following properties.

• Identities Map: logb(1) = 0.

• The Base Sets the Scale: logb(b) = 1.

• Inverse Property: blog
b
(u) = u and logb(bx) = x.

• Product Rule: logb(u · v) = logb(u) + logb(v).

• Quotient Rule: logb

(u

v

)

= logb(u) − logb(v).

• Power Rule: logb(up) = p · logb(u).

Proof. The first two properties were proved in the paragraphs preceding the
theorem. For the remaining three properties, because u > 0, we know that
bx = u has a solution x = logb(u). Similarly, for v > 0, we know that there is a
value y = logb(v) so that by = v. The inverse property is simply stating what
it means to be a logarithm.

The power rule considers the logarithm of the value up. By rewriting u = bx,
we are looking for the logarithm of up = (bx)p. By the Power of a Power
property, we have up = b(xp), which means that log(up) = xp = p · logb(u).

The product rule considers the logarithm of the value u · v. By rewriting
u = bx and v = by, we are looking for the logarithm of uv = bx · by. By the
Product with a Common Base property, we have uv = bx+y, which means
that log(uv) = x + y = logb(u) + logb(v). The proof of the quotient rule for
logarithms is proved in a similar way. �

The properties of logarithms allow us to compute the logarithm of a product
(and quotient) in terms of the logarithms of the individuals factors.

Example 1.8.4 A reference table shows log(2) ≈ 0.30103, log(3) ≈ 0.47712
and log(5) ≈ 0.69897. Use properties of logarithms to determine log(1.2).

Solution. Start by writing 1.2 as a product of the factors 2, 3, and 5.

1.2 =
12

10
=

4(3)

2(5)
=

2(3)

5

The properties of logarithms allow us to rewrite log(1.2) as

log(1.2) = log

(

2(3)

5

)

= log(2(3)) − log(5) (Quotient)

= log(2) + log(3) − log(5) (Product)

≈ 0.30103 + 0.47712 − 0.69897 = 0.07918.

�

Historically, the logarithm was invented so that multiplication and division
calculations could be solved using the much simpler operations of addition and
subtraction. Engineers and scientists would often reference logarithm tables
to find the logarithms of the factors and add the values by hand. Then they
would look in the table for the number that had the resulting logarithm. The
slide rule was a mechanical implementation, where the lengths corresponding
to logarithm values were added physically to get a new length. For an in-
teractive demonstration, check out http://educ.jmu.edu/~waltondb/webapp/log_

scale_explore.html.

Although modern calculators and computers have eliminated this particular
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need for logarithms in calculations, we still use logarithms in order to expand
symbolic formulas expressed as products and powers in terms of sums of the
logarithms of the factors. To expand a logarithm, we look at the structure of
the expression to which the logarithm is applied. There are likely many parts,
but we look at the final operation that is used to form that expression.

1. If the input of the logarithm is a product of expressions, then we expand
the logarithm by rewriting it as a sum of logarithms each with one of the
factors as input.

2. If the input of the logarithm is a quotient of expressions, then we expand
the logarithm by rewriting it as a difference of logarithms, adding the
logarithm of the numerator and subtracting the logarithm of the denom-
inator.

3. If the input of the logarithm is a power applied to an expression, then
we expand the logarithm by rewriting it as the value of the power times
the logarithm of the base.

4. If the input of the logarithm is a anything else, then the rules of loga-
rithms do not apply. In particular, we can not expand the logarithm of
a sum.

By changing any quotients into multiplication by negative powers, we can
reduce the process of expanding logarithms to only two rules: the product and
power rules.

Example 1.8.5 Expand log

(

4x3
√

2x + 5

(x2 + 3)5

)

as far as possible.

Solution. Each factor of the expression inside the logarithm will get its own
term using the product and quotient rules for logarithms. If we think of every
division in terms of negative powers, then we only need to deal with products.
In particular, the inner expression can be rewritten

4x3
√

2x + 5

(x2 + 3)5
= 4x3(2x + 5)

1

2 (x2 + 3)−5.

The factors identified are 4, x3, (2x+5)
1

2 , and (x2+3)−5. Using the logarithm’s
product rule followed by the logarithm’s power rule, we find

log

(

4x3
√

2x + 5

(x2 + 3)5

)

= log(4) + log(x3) + log
(

(2x + 5)
1

2

)

+ log
(

(x2 + 3)−5
)

= log(4) + 3 log(x) + 1
2 log(2x + 5) − 5 log(x2 + 3).

Notice that we could have used the quotient rule of logarithms instead of neg-
ative powers to get the term −5 log(x2 + 3). �

The rules for expanding logarithms can also be used in reverse to collect
terms into a single logarithm.

Example 1.8.6 Collect the terms of

2 + 4 log x + 2 log y − 1

2
log(x + y)

to write the expression in terms of a single logarithm.

Solution. We first recognize that every logarithm times an expression can
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be rewritten as a logarithm with the expression in the exponent.

2 + 4 log x + 2 log y − 1

2
log(x + y) = 2 + log(x4) + log(y2) + log

(

(x + y)−1/2
)

Now that the expression is a sum of logarithms. What about the isolated
number 2? Using the common logarithm with base b = 10, we know log(102) =
2.

2 + 4 log x + 2 log y − 1

2
log(x + y) = 2 + log(x4) + log(y2) + log

(

(x + y)−1/2
)

= log(102 x4 y2 (x + y)−1/2)

= log

(

100x4y2

√
x + y

)

�

1.8.3 Using Logarithms to Solve Equations

The properties of logarithms help solve us equations, particularly where the
variable is in an exponent. Logarithm and exponential operations are invert-
ible, so we can use them as balanced operations on an equation to obtain new
equivalent equations. The properties of the logarithm can then be used to our
advantage.

Example 1.8.7 Solve the equation 3 · 23x = 5 using the logarithm base 10.

Solution. It is usually best to isolate the exponential term first.

3 · 23x = 5

23x =
5

3

We next apply the logarithm base 10 to both sides of this equation, which then
allows us to apply the logarithm power rule on the left. Then we can isolate x.

log10(23x) = log10( 5
3 )

3x · log10(2) = log10( 5
3 )

x =
log10( 5

3 )

3 log10(2)

Alternatively, we could have applied the logarithm at the very first. This
would require using the logarithm product rule on the left.

log10(3 · 23x) = log10(5)

log10(3) + log10(23x) = log10(5)

log10(23x) = log10(5) − log10(3)

3x log10(2) = log10(5) − log10(3)

x =
log10(5) − log10(3)

3 log10(2)

�

The properties of logarithms allow us to compute logarithms with uncom-
mon bases using logarithms that we know using the change of base formula.
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Theorem 1.8.8 For any two exponential bases b and c,

logb(u) =
logc(u)

logc(b)
.

Proof. Consider x = logb(u), which solves bx = u. If we solve this equation
using logc to both sides, we find the change of base formula.

bx = u

logc(bx) = logc(u)

x logc(b) = logc(u)

x = logb(u) =
logc(u)

logc(b)
.

�

This theorem has a nice geometric interpretation in relation to the loga-
rithmic scale. The value logb(u) measures the distance in the logarithmic scale
from the origin at 1 to the location of u in terms of the scale set by the location
of b. The change of base formula is based on knowing the positions of u and
b on the logarithmic scale in terms of the base c. We take the position of u

and divide it by the length to get to b. In effect, this is a change of units
calculation, similar to finding a distance measured in inches when we know the
distance measured in centimeters.

Closely related to the change of base formula is the fact that we can rewrite
any power with a positive base using a composition with an elementary expo-
nential. We will soon discover that the number e is the natural exponential
base. Thus, every power can be rewritten in terms of the natural exponential
function. The logarithm with this base is the natural logarithm ln.

Example 1.8.9 Rewrite f(x) = 4 · 32x using the natural exponential function.

Solution. One approach is to use the inverse property, eln(u) = u, on the
factor with the power. Then use logarithm properties to simplify (expand) the
power.

f(x) = 4 · 32x

= 4 · eln(32x) (Inverse Property)

= 4 · e2x ln(3) (Power Rule)

= 4 · e2 ln(3) x (Commute)

Another approach is to just rewrite the base using the inverse property,
3 = eln(3), and then finish by using properties of powers.

f(x) = 4 · 32x

= 4 · (eln(3))2x (Inverse Property)

= 4 · e2x ln(3) (Power of Product)

= 4 · e2 ln(3) x (Commute)

�

We use base e for exponentials so much that we summarize the statement
as a theorem.

Theorem 1.8.10 Every exponential function f(x) = Abx can be written using

the natural exponential f(x) = Aekx where k = ln(b).
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Example 1.8.11 A population P is an exponential function of time t, P =
Aekt. Suppose that P = 500 when t = 0 and the population triples every 5
years. Find the formula for P .

Solution. This is an exponential model P = Aekt with unknown parameters
A and k. We use the data (t, P ) = (0, 500) and (t, P ) = (5, 1500) (the popula-
tion triples in 5 years) to create equations based on our model that constrain
the parameters.

{

500 = Ae0k

1500 = Ae5k

The first equation gives A = 500. Substituting that into the second equation,
we can solve for k.

Ae5k = 1500

500e5k = 1500

e5k = 3

5k = ln(3)

k = 1
5 ln(3)

Using these parameters, we have our model

P = 500e
1

5
ln(3)t.

�

1.8.4 Summary

• The logarithmic scale is based on the inverse map of an exponential
function. The multiplicative identity u = 1 represents the origin of the
scale. The base b establishes the length scale used to calculate logarithms.

• The properties of logarithms are consequences of properties of exponents.

◦ logb(1) = 0 (Identities Map) and logb(b) = 1 (Base Sets Scale).

◦ blog
b
(u) = u and logb(bx) = x (Inverse Property).

◦ logb(uv) = logb(u) + logb(v) (Product Rule).

◦ logb(u ÷ v) = logb(u) − logb(v) (Quotient Rule).

◦ logb(up) = p · logb(u) (Power Rule).

• To expand a logarithm is to identify if the input of a logarithm is a
product, quotient, or power, and then to rewrite that logarithm as a
sum of logarithms, a difference of logarithms, or a product with a loga-
rithm. This is repeated until no logarithm has an input that is a product,
quotient, or power.

1.8.5 Exercises

1. For an unknown base b, we have logb(2) = 0.3. Use the rules of logarithms
to find each of the following.

(a) logb(8)

(b) logb( 1
√

2
)

(c) logb(4b2)

Can you identify the value b?
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2. For an unknown base b, we have logb(2) ≈ 0.3562 and logb(3) ≈ 0.5646.
Use the rules of logarithms to find each of the following.

(a) logb(6)

(b) logb(72)

(c) logb( 4
9 )

3. Expand log
(

3x5(2x + 1)4
)

as far as possible.

4. Expand log

(

(x2 + 4)3

x4(3x + 1)

)

as far as possible.

5. Expand log
(

√

5(x2 + 1)
)

as far as possible.

6. Rewrite the expanded formula 2 + 3 log(x) − log(2x + 1) as the logarithm
(base 10) of a single expression.

7. Rewrite the expanded formula 1
2 ln(x)−ln(x+1)−ln(x−1) as the logarithm

(base e) of a single expression.

8. Use the natural logarithm to solve the equation 4 · 5x = 3.

9. Use the natural logarithm to solve the equation 2 · 3−x = 3 · 2x.

10. Write the function f(x) = 4x using an exponential with base 10.

11. Write the function f(x) = 4x using an exponential with base e.

12. Write the function f(x) = 5 · 0.25x using an exponential with base e.

13. Write the function f(x) = x4 using an exponential with base e for x > 0.

14. Write the function f(x) = x2x using an exponential with base e for x > 0.

15. Find an exponential model y = Aekx satisfying the states (x, y) = (0, 3)
and (x, y) = (5, 9).

16. Find an exponential model y = Aekx satisfying the states (x, y) = (1, 3)
and (x, y) = (4, 6).

17. In a living organism, 1 gram of carbon would result in about 840 carbon-14
atoms disintegrating per hour. After death, the rate of radiocarbon dis-
integrations decays exponentially. Carbon-14 has a half-life of 5730 years,
meaning the rate has dropped to half its original value after this time.
Determine the radioactive disintegration rate for 1 gram of carbon using
the natural exponential base e. What is the radioactive disintegration
rate of the sample after 1000 years?

18. A money market account starting at $2000 grew by 10% in one year.
Determine the value of the money market account assuming the rate of
growth remains constant by using an exponential growth model. What
will be the value in 4 years? How long does it take for the value to double?


