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1.9 Applications of Logarithms

The properties of logarithms are useful for a variety of applications. In this
section, we discuss using a logarithm to transform data. We will see that data
following an exponential model look linear in a semi-log transformation; data
following a power law model look linear in a log-log transformation. We also
consider an application to probability in relation to log-likelihood.

1.9.1 Logarithmic Transformations

Sometimes we look at data that are at many different scales. On a standard
number line, we think of the numbers 1, 10, 100, and 1000 as spread very far
apart. However, if we consider looking at a usual number line that will include
all of these values, the relative space between 1 and 10 is very small and both
seem very close to zero.
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Figure 1.9.1 A number line showing the numbers 1, 10, 100, and 1000.

In a similar way, we might normally think of the numbers 0.1, 0.01, 0.001,
and 0.0001 as all very close to 0. However, each value is a different order of
magnitude exactly like the values 1, 10, 100, and 1000. The common logarithm
is the logarithm for base ten (b = 10). Consequently, the common logarithm
of these numbers would give us equally spaced integers.

0.0001 = 10−4
⇔ log 0.0001 = −4

0.001 = 10−3
⇔ log 0.001 = −3

0.01 = 10−2
⇔ log 0.01 = −2

0.1 = 10−1
⇔ log 0.1 = −1

1 = 100
⇔ log 1 = 0

10 = 101
⇔ log 10 = 1

100 = 102
⇔ log 100 = 2

1000 = 103
⇔ log 1000 = 3

Because the logarithm spaces values apart according to the order of mag-
nitude, we can often use logarithms to visualize data that occur at multiple
orders of magnitude. Quality plotting tools allow us to plot the data but use
the logarithm for their position in the graph. This is called using a logarithmic
scale. We can choose to use a logarithmic scale for one or both axes.

Example 1.9.2 Brain size is strongly correlated with overall body mass in
mammals. However, mammals cover a wide range of different sizes. The graph
of brain size versus body mass for 96 species is shown in Figure 1.9.3, based
on data from The Statistical Sleuth by Ramsey and Schafer (2013). Because
the elephant is so large relative to many other species, its data point requires a
wide window in the figure. The majority of species, however, are much smaller
and form a crowded cluster of points near the origin.
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Figure 1.9.3 Plot of body mass (kg) and brain size (g) for 96 species of
mammals.

This suggests replotting the data using a logarithmic scale. The same data
a shown with logarithmic scales for both variables in the Figure 1.9.4. Using
a logarithmic scale on both axes is called a log-log plot. The transformed
data spreads the points out more uniformly across the figure. In addition, the
log-log plot suggests that the transformed data is approximately linear.
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Figure 1.9.4 Log-log plot of body mass (kg) and brain size (g) for 96 species
of mammals.

�

The previous example illustrated a dataset where transformed data look
linear. Let us work out what that relation must be like.

Suppose we have raw data with variables (x, y) and we transform the data
with logarithms. This creates two new variables, u = log(x) and v = log(y).
The log-log plot is a figure showing data (u, v) but with the axes showing the
original values on a logarithmic scale. If the transformed data are linear, there
must be a model

v = a u + b.

We now substitute our original variables and solve for y. We collect terms
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in the logarithm.

log(y) = a log(x) + b

= log(xa) + log(10b)

= log(10b
· xa)

Thus, we find y = 10b
· xa, which is a power law model. We summarize our

result as a theorem for future reference.

Theorem 1.9.5 Data (x, y) such that the transformed data (log(x), log(y)) (a
log-log plot) has a linear relation will satisfy a power law relation.

Another common transformation is a semi-log plot. This occurs when only
the dependent variable is transformed. In other words, only the y-axis is
transformed to a logarithmic scale. What relationship does this reveal?

Suppose we have raw data with variables (x, y) and we only transform y
with a logarithm,

v = log(y).

The semi-log plot is a figure showing data (x, v) but with the axes showing the
original values on a logarithmic scale. If the transformed data are linear, there
must be a model

v = a x + b.

We now substitute our original variables and solve for y.

log(y) = a x + b.

To solve for y, we use the inverse operation to the logarithm, which is an
exponential.

y = 10a x+b.

Using the properties of exponents, we can rewrite this

y = 10a x
· 10b = 10b

· (10a)x.

Thus, we find y = A Bx, with A = 10b and B = 10a, which is an exponential
model.

Theorem 1.9.6 Data (x, y) such that the transformed data (x, log(y)) (a semi-
log plot) has a linear relation will satisfy an exponential relation.

We can use the log-transformations to find the power law and exponential
relations for actual data. If we know that (x, y) satisfies a power law for given
data, then we know (log(x), log(y)) satisfies a linear model. We can calculate
the slope and intercept of the transformed linear model and then solve for y.
If we know that (x, y) satisfies an exponential model for given data, then we
can find the equation of a line for (x, log(y)) and then solve for y.

Example 1.9.7 Find the power law for (x, y) that includes data (x, y) = (2, 5)
and (4, 8).

Solution. Power law data is linear under a log-log transformation, u =
log(x) and v = log(y). The transformed points are (u, v) = (log x, log y) =
(log(2), log(5)) and (u, v) = (log x, log y) = (log(4), log(8)) The slope is calcu-
lated and simplified using properties of logarithms,

m =
∆v

∆u
=

log(8) − log(5)

log(4) − log(2)

=
log(8/5)

log(4/2)
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=
log(8/5)

log(2)

Using the point-slope form of a line, we have

v − log(5) = m(u − log(2))

=
log(8/5)

log(2)
(u − log(2))

Now we substitute back the original variables with u = log(x) and v =
log(y). Alternatively, we could have done the work above using log x and log y
in place of u and v. Our final equation then would be written

log(y) − log(5) =
log(8/5)

log(2)
(log(x) − log(2)).

We now proceed to apply the rules for logarithms to simplify our expression.
Our goal is to have a logarithm on the left equaling a logarithm on the

right. The first step is to use the quotient rule of logarithms:

log(y/5) =
log(8/5)

log(2)
log(x/2).

On the right, we have a product of values. A linear log-log plot corresponds to
a power law, and we ultimately want our equation to have x raised to a power.
Because x currently appears within the logarithm, we will use the power rule
for logarithms. The logarithm with x, log(x/2), is multiplied by an expression.
That expression, which originally served as our slope, will become the power.

For simplicity in writing, we introduce a new symbol, p =
log(8/5)

log(2)
.

log(y/5) = p · log
(x

2

)

log(y/5) = log
(x

2

)p

Now that we have the logarithm of an expression on the left and on the
right, the expressions within the logarithms must be equal.

y

5
=

(x

2

)p

y = 5 ·

(x

2

)p

This equation is our model for the power law relation. �

We now illustrate the similar process for a semi-log transformation. Expo-
nentially related data will appear linear on a semi-log plot.

Example 1.9.8 Find the exponential law for (x, y) that includes data (x, y) =
(2, 4) and (5, 10).

Solution. Exponential law data is linear under a semi-log transformation,
u = x and v = log(y) The transformed points are (u, v) = (x, log y) =
(2, log(4)) and (u, v) = (x, log y) = (5, log(10)). The slope is calculated and
simplified using properties of logarithms,

m =
∆v

∆u
=

log(10) − log(4)

5 − 2
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=
log(10/4)

3

=
log(5/2)

3

Using the point-slope form of a line, we can create our equation relating our
variables.

v − log(4) = m(u − 2)

log y − log 4 =
log(5/2)

3
(x − 2)

We now seek to find an equivalent equation where a logarithm of an expres-
sion appears alone on each side of the equation. We first apply the quotient
rule for logarithms on the left.

log y − log 4 =
log(5/2)

3
(x − 2)

log(y/4) =
log(5/2)

3
(x − 2)

Because data that are linear in a semi-log plot have an exponential relation,
we want to see how to get x into the exponent. On the right-hand side, we
have a logarithm, log(5/2), that is multiplied by (x − 2) and divided by 3. We
can group those together as a single multiplication and then apply the power
rule for logarithms.

log(y/4) =
x − 2

3
· log(5/2)

log(y/4) = log
(

(5/2)(x−2)/3
)

We can now eliminate the logarithm from both sides of the equation.

y

4
= (5/2)(x−2)/3

y = 4 · (5/2)(x−2)/3

�

We end with an example of how this might relate to actual data.

Example 1.9.9 In 1967, Lasiewski and Dawson published an article in The
Condor relating the body mass M (in kg) and resting metabolic rate R (in
kcal/day) for birds. They tabulated the recorded body mass and metabolic rate
for individual birds based on published studies. The following table includes
twelve of these birds. Graph the data and determine if the data appear linear
in a log-log plot. Then use a linear regression of transformed data to estimate
the model
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Table 1.9.10 Selected body mass and resting metabolic rate of birds,
as tabulated in Lasiewski and Dawson (1967).

Bird M (kg) R (kcal/day)

Rufous hummingbird 0.0038 1.5

Common nighthawk 0.075 9.5

Common wood pigeon 0.150 17.0

Northern bobwhite 0.194 23.0

Wood duck 0.485 65

Pacific gull 1.21 127

Great horned owl 1.450 108

Wood stork 2.5 201

Brown pelican 3.51 264

Sandhill crane 3.89 168

Trumpeter swan 8.88 418

Andean condor 10.32 351

Solution. After entering the data into a spreadsheet or other graphing utility,
we generate a scatterplot of the points (M, R), as shown below on the left. You
should see that the relationship of the data is increasing and concave down. If
we modify both axes to use a logarithmic scale, as shown below on the right,
we see that the transformed relationship looks reasonably linear. This suggests
using a linear relation on the transformed coordinates.
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To form the linear model, we need to generate actual transformed values
and not just a graph using logarithm scales. In the spreadsheet, we will create
two new columns for ln(M) and for ln(R). For example, suppose the mass
M of Selasphorus rufus appears in the spreadsheet in cell B2 and we want to
generate the transformed variable ln(M) in cell D2. In cell D2, we would type
the formula =ln(B2). Copying this formula and pasting it into other cells will
preserve the relative location. If you paste it into cell D3, you will discover it
automatically changed the formula to =ln(B3).

Once we have new columns ln(M) and ln(R), we can create a new scat-
terplot of data (ln(M), ln(R)) using linear scales. This new graph will have
the same appearance as the original data using logarithmic scales, except that
the axes show the logarithm of the data rather than the original data using
logarithmic scales. With this new graph, we can find the linear trend line. The
graph below shows the graph of the transformed data, along with a trend line
using the formula

y = 0.7356x + 4.4192.

We change the variables to those plotted to give a transformed model

ln(R) = 0.7356 ln(M) + 4.4192.
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We find the model of the relation for the original variables M 7→ R by
solving for R and simplifying. To eliminate the logarithm, we apply the inverse
operation of the natural exponential. Because our data are approximate, we
can use decimal approximations for our formulas.

ln(R) = 0.7356 ln(M) + 4.4192

eln(R) = e0.7356 ln(M)+4.4192

R = e0.7356 ln(M)
· e4.4192

= eln(M0.7356)
· 83.030

= 83.030 · M0.7356

We see that the model is a power function, R = 83.030M0.7356. The figure
below shows the original data using linear axes along with this approximating
model.
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In practice, spreadsheets have built-in tools to accomplish the transformed
calculations. When a spreadsheet application allows you to add a trend-line to
a given plot, it often allows you to select a variety of different models. When
it allows you to use an exponential model, the spreadsheet is internally using
a semi-log transform, finding the linear trend-line, and then reporting back
the resulting exponential model. Similarly, when a spreadsheet allows you
to choose a power law model, the spreadsheet is internally finding the linear
equation for a log-log transform and then reporting back the resulting power
law model.

1.9.2 Enrichment: Log-Likelihood

Note 1.9.11 This section is included as an example of how logarithms play a
more fundamental role in a more advanced sense than just transforming data.
The content is optional. Subsequent sections do not rely on students having
learned this material.

Suppose that we are performing an experiment that has a random outcome
with two possibilities. We do not know in advance the probabilities associated
with the two outcomes. For example, flipping a coin results in heads or tails.
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A fair coin has equal probabilities. A biased coin has unequal probabilities. If
we suspected a coin was biased, we might want to determine the coin’s true
odds for heads versus tails. We would like to use repetition of an experiment
in order to determine these probabilities.

In statistics, there is a method commonly used to estimate unknown param-
eters called the maximum likelihood principle. Each observation is assumed
to have outcomes governed by a probability distribution characterized by cer-
tain model parameters. The likelihood L is the product of the probabilities
densities associated with each observation. The maximum likelihood method
adopts the parameter values that makes the likelihood as large as possible.

For our experiment with two different outcomes, the probability distribu-
tion is characterized by one parameter, p, which gives the probability of the
first outcome (often called a success). The probability of the second outcome
(often called a failure) will be 1 − p since probabilities must add to 1. Suppose
that we repeated the experiment ten times and counted six successes and four
failures. The likelihood is the product of the probabilities for these outcomes,
using the expressions involving the parameter. The likelihood will be the prod-
uct of six factors with p and four factors with 1−p. Writing these with powers,
the likelihood is a function of p,

L = p6(1 − p)4.

How will we maximize this value? Until we learn some calculus, we will
need to find the maximum using a graph. The graph of this formula is shown
below. (To make a graph, most graphing utilities require that you use the
independent variable x in place of p.)
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How do we interpret this graph? Because the parameter p is supposed to
be a probability, we require 0 < p < 1. But the graph doesn’t seem to show
a maximum there. This is because values of p outside the meaningful domain
dominate the figure. If we redo the graph so that the domain only include
[0, 1], we get a better picture.
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This graph has a maximum value at p = 0.6. We can also see why the
earlier graph didn’t show the maximum. The scale on the vertical axis for
L for the restricted interval has an order of magnitude of 10−3. If we had
even more data than ten observations—and to estimate probabilities we need
many more—this magnitude would be even smaller. Because of this effect that
the likelihood shrinks in magnitude with more data, the likelihood value often
drops below the smallest number a computer can represent. It would then be
impossible to find the maximum likelihood parameter value.

To avoid this issue, data scientists typically record the log-likelihood rather
than the likelihood. Maximizing the log-likelihood will always give the same
values as maximizing the likelihood itself. The log-likelihood is calculated as
the natural logarithm of the likelihood,

log L = ln(L).

Because the logarithm of a product is equal to the sum of the logarithms of
the factors, the log-likelihood is calculated by adding the logarithms of the
probability densities corresponding to the observations. For our example,

log L = ln
(

p6 (1 − p)4
)

= ln
(

p6
)

+ ln
(

(1 − p)4
)

= 6 ln (p) + 4 ln (1 − p)

A graph of the log-likelihood log L versus p is shown in the figure below. The
maximum value again occurs at p = 0.6.
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Example 1.9.12 An exponential time is a random time until some event
occurs that is characterized by gaining no information by knowing how long has
already passed without the event yet occurring. The time until a radioactive
particle decays is an example of an exponential time. The mathematical model
for the probability density of an exponential time t has a single parameter,
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usually represented by the Greek letter lambda λ,

f(t) = λe−λt.

In a series of five experiments, the observed exponential times were recorded
as t1 = 12.3, t2 = 4.6, t3 = 23.1, t4 = 0.4, and t5 = 10.5. Calculate the log-
likelihood for this collection of data, plot the log-likelihood, and determine the
maximum likelihood value for the parameter λ.

Solution. The logarithm of the density is

ln f(t) = ln
(

λe−λt
)

= ln(λ) + ln(e−λt)

Because the natural logarithm and the exponential with the natural base e are
inverses, we can simplify further to obtain

ln f(t) = ln(λ) − λt.

The log-likelihood is the sum of the logarithms of the densities using the
observed times. Each observation will result in adding ln(λ), so we obtain

log L = 5 ln(λ) − λ(12.3 + 4.6 + 23.1 + 0.4 + 10.5)

= 5 ln(λ) − 50.9λ

The parameter λ only needs to be a positive number. If we plot values 0 <
λ < 10 to explore where the maximum might be, we get the figure on the left.
It shows the graph steadily decreasing, which means the maximum is close to
zero. If we plot value 0 < λ < 0.5, we get the figure on the right. The maximum
value occurs at λ = 0.098231, which is our maximum likelihood estimate of the
parameter.
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1.9.3 Summary

• Transforming data with a logarithm allows us to view the distribution of
data spread over a wide range of magnitudes.

• Data that appear linear in a log-log plot (both axes in logarithmic scale)
follow a power law relation.

• Data that appear linear in a semi-log plot (only y-axis in logarithmic
scale) follow an exponential relation.

• Estimating parameters for probability distributions is frequently based
on maximum likelihood estimation. To avoid numerical underflow (expo-
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nentially small magnitudes) of the likelihood, this is more common done
using the log-likelihood.

1.9.4 Exercises

1. Suppose data for (t, M) appear linear in a semi-log plot. If the data
include the points (t, M) = (2, 5) and (t, M) = (5, 2), find a linear model
for the tranformed data and use it to find the appropriate model for the
original data.

2. Suppose data for (P, S) appear linear in a log-log plot. If the data include
the points (P, S) = (2, 5) and (P, S) = (5, 2), find a linear model for the
tranformed data and use it to find the appropriate model for the original
data.

3. A random experiment has two possible outcomes, high or low. The prob-
ability the result is high is represented by p, with 0 < p < 1, and the
probability the result is low is represented by 1 − p. Twenty independent
replicates of the experiment resulted in six highs and fourteen lows. Calcu-
late the formula for the likelihood and use it to compute the log-likelihood.
With a graph, estimate the maximum likelihood value for p.

4. An experiment results in randomly distributed exponential times. The
probability density used in the likelihood has a single parameter λ,

f(t) = λe−λt.

Replicating the experiment six times results in measured times t1 = 0.826,
t2 = 0.293, t3 = 0.218, t4 = 0.024, t5 = 0.561, and t6 = 0.233. Calculate
the formula for the likelihood and use it to compute the log-likelihood.
With a graph, estimate the maximum likelihood value for λ.

5. A manufacturer tracks quality control by testing random samples for
proper performance. The number n of identified flaws is a random value
that occurs with a probability

f(n) = ane−λλn,

where an does not depend on the model parameter λ. To find the maxi-
mum likelihood value for λ, the value of an does not matter. For five days
of quality control tracking, the number of observed flaws were recorded.
n1 = 4, n2 = 2, n3 = 5, n4 = 4, and n5 = 8. Calculate the formula for the
likelihood using an = 1 and use it to compute the log-likelihood. With a
graph, estimate the maximum likelihood value for λ.


