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11.1 The Derivatives of Trigonometric Functions

11.1.1 Essential Trigonometric Identities

When we found the derivative of elementary exponential functions, we found
that we needed to use a rule to rewrite bx+h = bx

· bh. This type of rule is
called an identity. Identities provide rules to rewrite a formula in another form
without changing the value of the formula. Trigonometric functions are all
defined in terms of the elementary sine and cosine functions. Consequently, we
need the basic identities of sine and cosine.

We start with the sum identities.

Theorem 11.1.1 Sum Identities of Sine and Cosine. Given any α, β ∈ R,

sin(α + β) = sin(α) cos(β) + cos(α) sin(β),

cos(α + β) = cos(α) cos(β) − sin(α) sin(β).

Proof. The following geometric proof is valid for acute angles, 0 < α, β < π

2
.

Consider the location of the angle α and α + β on the unit circle, illustrated as
points A and B, respectively. The origin at (0, 0) will be the point O and the
point (1, 0) will be the point P . Construct a line segment from B to intersect
OA at a right angle; call the point of intersection C. Draw a vertical line from
C which intersects OP at a point Q. Finally draw a horizontal line through C

and a vertical line through B, which intersect at a point D.

O P

A

B

α

β

By construction, we know m∠POA = α and m∠AOB = β. Because
OB = 1, we know that OC = cos(β) and BC = sin(β). By geometry, we can
prove that triangle BDC is a right triangle with m∠DBC = α. Consequently,

BD = BC cos(α) = cos(α) sin(β),
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DC = BC sin(α) = sin(α) sin(β).

Similarly, triangle OQC is a right triangle with m∠COQ = α. Since OC =
cos(β), we know

OQ = OC cos(α) = cos(α) cos(β),

CQ = OC sin(α) = sin(α) cos(β).

The x-coordinate of B is cos(α + β) so that

cos(α + β) = OQ − CD = cos(α) cos(β) − sin(α) sin(β).

The y-coordinate of B is sin(α + β) so that

sin(α + β) = CQ + DB = sin(α) cos(β) + cos(α) sin(β).

�

Next, we state the symmetries of sine and cosine.

Theorem 11.1.2 Sum Identities of Sine and Cosine. Sine is an odd
function. Cosine is an even function. That is, for any α ∈ R,

sin(−α) = − sin(α),

cos(−α) = cos(α).

Proof. An angle −α goes in the opposite direction as the angle α. Consequently,
the points on the unit circle have the same horizontal coordinate,

cos(−α) = cos(α),

and opposite vertical coordinates,

sin(−α) = − sin(α).

�

Finally, because the sine and cosine are defined on a unit circle (with radius
1), we have a Pythagorean identity regarding the sum of the squared values.

Theorem 11.1.3 The Pythagorean Identity. For any α ∈ R,

sin2(α) + cos2(α) = 1,

tan2(α) + 1 = sec2(α),

1 + cot2(α) = csc2(α).

Proof. By definition, the point (x, y) = (cos(α), sin(α)) is on the unit circle
x2 + y2 = 1. By substitution, x = cos(α) and y = sin(α), we get the identity
cos2(α) + sin2(α) = 1. If we divide both sides of the equation by cos2(α), we
obtain

cos2(α)

cos2(α)
+

sin2(α)

cos2(α)
=

1

cos2(α)
⇔ 1 + tan2(α) = sec2(α).

The last identity comes from dividing both sides of the equation by sin2(α).
�

11.1.2 Differentiation of Sine and Cosine

We start by computing the derivatives for sine and cosine at the origin, sin′(0)
and cos′(0). Once we know those values, we will be able to find the derivatives
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as functions.

Theorem 11.1.4

sin′(0) = lim
x→0

sin(x)

x
= 1

Proof. By definition,

sin′(0) = lim
h→0

sin(0 + h) − sin(0)

h
.

Since sin(0) = 0, we can rewrite

lim
h→0

sin(h)

h
= lim

x→0

sin(x)

x
,

since the variable name does not affect the value of the limit.
Consider the figure below with angle x > 0. The point A is on the unit

circle and has coordinates (cos(x), sin(x)). Consequently, triangle OBA has
area 1

2
sin(x) cos(x). The point Q has coordinates (1, tan(x)), so triangle OPQ

has area 1
2

tan(x). If we consider the sector of the circle OAP , it has an area
that is the corresponding fraction x

2π
of the area of the unit circle, π, which

has the value x

2
.

O
x

Q

P

A

B

Comparing the areas leads to the inequality,

1

2
sin(x) cos(x) <

1

2
x <

1

2
tan(x).

Multiplying by 2 and dividing by sin(x), we have another inequality

cos(x) <
x

sin(x)
<

1

cos(x)
.

Since cos(x) is continuous at x = 0, we know

lim
x→0

cos(x) = cos(0) = 1,
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lim
x→0

1

cos(x)
= 1.

Using the Limit Squeeze Theorem and the Limit of a Reciprocal, we then know

lim
x→0

x

sin(x)
= 1 ⇒ sin′(0) = lim

x→0

sin(x)

x
= 1.

�

It is important to note that getting the value for this limit to be the value 1
was a consequence of measuring angles in radians. For any other way that we
might measure angles, the fraction of the circles area would be a ratio of the
value x to the measurement of the angle to complete a full circle. For example,
if we measured angles in degrees, we would have instead found sin′

deg(0) = 2π

360
.

Mathematically, one justification for measuring angles in radians is simply in
order to guarantee that this sin′(0) = 1.

Theorem 11.1.5

cos′(0) = lim
x→0

cos(x) − 1

x
= 0

Proof. By definition,

cos′(0) = lim
h→0

cos(0 + h) − cos(0)

h
.

Since cos(0) = 1, we can rewrite

cos′(0) = lim
h→0

cos(h) − 1

h
= lim

x→0

cos(x) − 1

x
.

Multiplying the numerator and denominator by cos(x) + 1, we find

cos′(0) = lim
x→0

(cos(x) − 1)(cos(x) + 1)

x(cos(x) + 1)
= lim

x→0

cos2(x) − 1

x(cos(x) + 1)
.

By the Pythagorean identity, we know cos2(x) − 1 = − sin2(x) so that we can
rewrite

cos′(0) = lim
x→0

sin(x)

x

− sin(x)

cos(x) + 1
.

Since lim
x→0

sin(x)

x
= sin′(0) = 1 and

lim
x→0

− sin(x)

cos(x) + 1
=

− sin(0)

cos(0) + 1
=

0

2
= 0,

the limit rule for a product guarantees cos′(0) = 0. �

Knowing the instantaneous rates of change of sine and cosine at x = 0
allows us to compute the derivative at any input value. The proofs for these
differentiation rules rely on the sum identities for trigonometric functions.

Theorem 11.1.6
d

dx
[sin(x)] = sin′(x) = cos(x)

Proof. Using the definition of the derivative, we write

sin′(x) = lim
h→0

sin(x + h) − sin(x)

h
.

The sum identity for sine allows us to rewrite sin(x + h) = sin(x) cos(h) +
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cos(x) sin(h), so that the derivative can be rewritten

sin′(x) = lim
h→0

sin(x) cos(h) + cos(x) sin(h) − sin(x)

h

= lim
h→0

sin(x) · (cos(h) − 1) + cos(x) · sin(h)

h

= lim
h→0

sin(x) ·
cos(h) − 1

h
+ cos(x)

sin(h)

h
.

Because sin(x) and cos(x) do not depend on h, they play the role of a constant
multiple. By the rules for a limit of a sum and the limit of a constant multiple,
we can write

sin′(x) = sin(x) cos′(0) + cos(x) sin′(0) = 0 · sin(x) + 1 · cos(x) = cos(x).

�

Theorem 11.1.7
d

dx
[cos(x)] = cos′(x) = − sin(x)

Proof. Using the definition of the derivative, we write

cos′(x) = lim
h→0

cos(x + h) − cos(x)

h
.

The sum identity for cosine allows us to rewrite cos(x + h) = cos(x) cos(h) −

sin(x) sin(h), so that the derivative can be rewritten

cos′(x) = lim
h→0

cos(x) cos(h) − sin(x) sin(h) − cos(x)

h

= lim
h→0

cos(x) · (cos(h) − 1) − sin(x) · sin(h)

h

= lim
h→0

cos(x) ·
cos(h) − 1

h
− sin(x)

sin(h)

h
.

We can therefore write

cos′(x) = cos(x) cos′(0) − sin(x) sin′(0) = 0 · cos(x) − 1 · sin(x) = − sin(x).

�

11.1.3 Derivatives of Other Trigonometric Functions

All other trigonometric functions are defined in terms of the sine and cosine
functions. Knowing the derivatives of sine and cosine allow us to compute the
derivative rules for each of the other trigonometric functions.

Theorem 11.1.8

d

dx
[tan(x)] = tan′(x) = sec2(x)

d

dx
[sec(x)] = sec′(x) = sec(x) tan(x)

d

dx
[cot(x)] = cot′(x) = − csc2(x)

d

dx
[csc(x)] = csc′(x) = − csc(x) cot(x)
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Proof. The proofs for these rules are all based on the definitions of these
trigonometric functions in terms of sine and cosine.

tan(x) =
sin(x)

cos(x)
sec(x) =

1

cos(x)

cot(x) =
cos(x)

sin(x)
csc(x) =

1

sin(x)

We will look at the derivatives of tan(x) and sec(x) and leave the other two
proofs to the reader.

Because tan(x) is defined as a quotient, we compute its derivative using the
quotient rule.

d

dx
[tan(x)] =

d

dx
[
sin(x)

cos(x)
]

=
cos(x) sin′(x) − sin(x) cos′(x)

cos2(x)

=
cos(x) · cos(x) − sin(x) · (− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
= sec2(x)

Similarly, sec(x) is defined as a reciprocal, so we use the reciprocal rule of
derivatives.

d

dx
[sec(x)] =

d

dx
[

1

cos(x)
]

=
− cos′(x)

cos2(x)
=

−(− sin(x))

cos2(x)
=

sin(x)

cos2(x)

=
1

cos(x)
·

sin(x)

cos(x)
= sec(x) tan(x)

�

11.1.4 Practice with Derivatives

When we take into account the chain rule, we have the following general deriva-
tive rules for trigonometric functions. Notice that cosine, cotangent, and cose-
cant all have a negative sign. Also note the similarity in formulas between
the derivatives for sine and cosine, for tangent and cotangent, and for secant
and cosecant. There are really only three differentiation rules, each with a
complementary rule for the complementary functions.

General Derivative Rules for Trigonometric Functions.

Let u represent any expression that depends on x.

d

dx
[sin(u)] = cos(u)

du

dx
d

dx
[cos(u)] = − sin(u)

du

dx
d

dx
[tan(u)] = sec2(u)

du

dx
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d

dx
[cot(u)] = − csc2(u)

du

dx
d

dx
[sec(u)] = sec(u) tan(u)

du

dx
d

dx
[csc(u)] = − csc(u) cot(u)

du

dx

The following examples illustrate how these rules can be used with other
rules of differentiation.

Example 11.1.9 Find
d

dx
[3 sin(x2)].

Solution.

d

dx
[3 sin(x2)] = 3

d

dx
[sin(x2)] Constant Multiple

= 3 sin′(x2) ·
d

dx
[x2] Chain Rule, u = x2

= 3 cos(x2) ·
d

dx
[x2] Derivative of Sine

= 3 cos(x2) · (2x) Derivative of Power

= 6x cos(x2)

�

Example 11.1.10 Find
d

dx
[sec(e3x)].

Solution.

d

dx
[sec(e3x)] = sec′(e3x) ·

d

dx
[e3x] Chain Rule, u = e3x

= sec(e3x) tan(e3x)
d

dx
[e3x] Derivative of Secant

= sec(e3x) tan(e3x) · e3x
d

dx
[3x] Chain Rule, eu with u = 3x

= 3e3x sec(e3x) tan(e3x)

�

Example 11.1.11 Find
d

dx
[e−3x sin(5x)].

Solution. The function is a product of e−3x and sin(5x). Using the chain
rule on these individual parts, we find

d

dx
[e−3x] = e−3x

d

dx
[−3x]

= −3e−3x

d

dx
[sin(5x)] = sin′(5x)

d

dx
[5x]

= 5 cos(5x)

Knowing those derivatives, we use the product rule to find the derivative of
the overall formula.

d

dx
[e−3x sin(5x)] =

d

dx
[e−3x] · sin(5x) + e−3x

d

dx
[sin(5x)] Product Rule
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= (−3e−3x) sin(5x) + e−3x
· (5 cos(5x))

= −3e−3x sin(5x) + 5e−3x cos(5x)

�

11.1.5 The Squeeze Theorem for Limits

Theorem 11.1.12 Limit Squeeze Theorem. If f(x) is bounded between
two functions ℓ(x) (lower bound) and u(x) (upper bound) and we know

lim
x→a

ℓ(x) = lim
x→a

u(x) = L,

then this guarantees
lim
x→a

f(x) = L.

More formally, if there exists δ > 0 such that ℓ(x) < f(x) < u(x) whenever
a < x < a + δ and ℓ(x) → L and u(x) → L as x → a+, then

lim
x→a+

f(x) = L.

A similar statement holds for the lower limit and two-sided limit.


