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12.1 Introduction to Optimization

When we know how to find extreme values of a function, we can use those
techniques to answer physical questions involving optimization. Optimization
problems involve at least two related physical quantities. One quantity is a
control variable, a physical attribute of the system that one can adjust. The
other quantity depends on the control variable and measures an aspect of the
system that we wish to improve.

In this section, we consider some examples of optimization. The primary
challenge for such problems is in clearly defining the system, identifying the
control variable and the quantity to optimize. We then apply the calculus
techniques for finding extreme values.

12.1.1 Objective Functions

Optimization is the application of finding extreme values to either maximize
or minimize some quantity of interest. We usually have a physical incentive
for this optimization, such as minimizing energy consumption, maximizing
evolutionary fitness, minimizing costs of materials, or maximizing profit. The
quantity of interest will depend on some independent variable that we have
the ability to control or adjust. We call the mapping from the control variable
to the physical quantity being optimized the objective function.

Frequently, identifying the appropriate objective function is the more chal-
lenging aspect of an optimization problem. Once the function is identified, the
task is reduced to identifying local extreme values and behavior at end points.
Sometimes the objective function depends on multiple independent variables
that are related through some constraint. The constraint typically determines
an equation which can be used to rewrite the objective functions as having
only have a single independent variable. In addition, we need to determine a
meaningful physical domain for the function.

We begin with several examples of creating objective functions for optimiza-
tion problems. The actual analysis will follow later. Several simple examples
come from geometry where we need to construct a shape that has some feature
(like a given perimeter, area or volume) and we wish to make some other fea-
ture as large as possible. We use these examples not because they are practical
but because they illustrate the principles of optimization effectively.

Example 12.1.1 Suppose we want to create a rectangle that has an area of
500 cm2. Three sides will have one type of trim while the fourth side will have
trim that is twice as expensive. What should be the dimensions of the rectange
to minimize the cost of the trim?

Solution. Start by identifying the variables.

• h is the horizontal width of the rectangle

• v is the vertical length of the rectangle

• C is the cost of the trim around the rectangle

Once we have identified our variables, we need to find a formula for the cost
because that is what we want to minimize. We will assume that the more
expensive side is one of the horizontal lengths. Let p be the unit cost (per cm)
of the less expensive trim so that 2p is the unit cost of the more expensive trim.
The total cost of the trim is given by

C = (h + 2v) · p + h · (2p) = (3h + 2v) · p.
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Our objective function (h, v) 7→ C involves two independent variables. This
means we need an additional constraint. Reviewing the problem, we recall that
the total area needs to be 500 cm2. The area is computed by A = h · v = 500
so that we can treat v as another dependent variable,

v =
500

h
.

Substituting this formula into our objective function, we can rewrite it involving
only a single independent variable h:

C =
(

3h + 2 ·
500

h

)

· p = 3ph +
1000p

h
.

Because p is a constant multiple in this formula, the location of the minimum
will not depend on p.

Finally, we need to consider the physical domain for the objective function.
The natural domain for the map h 7→ C is h 6= 0. However, negative values
for h don’t make physical sense. The physical domain for this problem will be
h ∈ (0, ∞). That is, the optimization problem will be answered by finding the
global minimum of C on the interval (0, ∞).

A graph of this relation is shown below using p = 1. The minimum value
occurs somewhere near h = 20 with a cost C close to 100p. We need to use
calculus to find the exact value.
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Example 12.1.2 Suppose you have a flexible pipe of length 10 meters that
you will bend to make three sides of a rectangle. How long should you make
these sides so that the rectangle has as large an area as possible?

Solution. We start by identifying the variables. It is often helpful to draw a
figure. A sample diagram is shown in Figure 12.1.3. We label the two opposite
vertical sides by the variable h (height) and the horizontal side by the variable
w (width).
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Figure 12.1.3 Three sides of a rectangle are made from a flexible pipe.

We want to make the area as large as possible. This makes the area of the
rectangle A the dependent variable. The area of a rectangle is the height times
the width, so our objective function is defined by

A = h · w.

We need to write this as a function of one independent variable.
The constraint for our independent variables h and w is that the total length

of pipe used is 10 meters. The pipe is used for two edges of length h and one
edge of length w. As an equation, the constraint becomes

2h + w = 10.

If we solve this equation for w, we find

w = 10 − 2h

which we can substitute into the objective function,

A = h · (10 − 2h) = 10h − 2h2.

The last step is to identify the physical domain for the objective function.
A physical measurement of length must be non-negative, so h ≥ 0. What is the
largest value of h that is possible? We need w ≥ 0 which requires 10 − 2h ≥ 0.
This implies h ≤ 5. The physical domain is therefore h ∈ [0, 5]. Even though
the shape would be an empty rectangle (no area), all of the variables are still
defined when h = 0 or h = 5. We include the end points since closed intervals
are easier to analyze.

A graph of the objective function is shown in Figure 12.1.4. We can see
that the area will be maximized at the vertex of this parabola. Calculus will
give us an efficient method to find this point.



12.1. INTRODUCTION TO OPTIMIZATION 515

−1 1 2 3 4 5 6

5

10

15

h

A

Figure 12.1.4 A = 10h − 2h2 with domain [0, 5]
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A biological example follows. A fundamental hypothesis of biology is that
evolution drives organisms to maximize their fitness, which corresponds to the
number of surviving offspring. There is often a trade-off between the number
of offspring and the probability that the offspring survive. Let f (fecundity)
represent the number of offspring an organism produces and let s (survival)
represent the probability that an offspring will survive. The then fitness is
given by F = f · s, the average number of offspring that survive.

Example 12.1.5 Suppose that the survival probability is related to fecundity
so that it decreases linearly. If each organism has ten offspring, the survival
probability is s = 0.95. If each organism has forty offspring, the survival
probability drops to s = 0.8. How many offspring should the organism have to
maximize fitness?

Solution. First, identify the variables. The objective function is the fitness
F which depends on both f (fecundity) and s (survival probability) through

F = f · s.

This objective function has two independent variables, (f, s) 7→ F .
We need to reduce the number of independent variables to a single variable

by realizing that f and s will satisfy a linear relation. Because the original
question asks for how many offspring should be produced, we will choose f to
be the independent variable. The line passes through points (f, s) = (10, 0.95)
and (f, s) = (40, 0.8). We can compute the slope

∆s

∆f
=

0.8 − 0.95

40 − 10
=

−0.15

30
= −0.005.

Using the point-slope equation of a line, we find

s = 0.95 − 0.005(f − 10) = −0.005f + 1.
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Using substitution in the objective function gives

F = f · (−0.005f + 1) = −0.005f2 + f .

To find the physical domain, we require f ≥ 0 and s ≥ 0. The second
requirement becomes −0.005f + 1 ≥ 0, which means that f ≤ 200. The
physical domain is therefore f ∈ [0, 200]. A graph shows that the maximum
should occur at the vertex of a parabola.
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Figure 12.1.6 F = −0.005f2 + f with domain [0, 200]
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12.1.2 Analysis for Optimization

Now that we have illustrated how to find the objective function for several
examples, let us work through the analysis to solve the optimization problems.
Two of our examples had objective functions that were quadratic polynomials.
We start with those examples.

Example 12.1.7 The bent pipe example resulted in an objective function

A = 10h − 2h2

and a physical domain h ∈ [0, 5]. Complete the optimization and find the
dimensions that will maximize the area of the resulting rectangle.

Solution. To find the global extreme of the function A(h) = 10h − 2h2, we
begin by computing the derivative,

A′(h) = 10(1) − 2(2h) = 10 − 4h.
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To perform sign analysis of A′(h), we first find the root A′(h) = 0:

10 − 4h = 0

10

4
= h

h =
5

2
.

Our test intervals are [0, 5

2
) and (5

2
, 5]. Testing the sign at h = 1 and h = 4 as

sample points, we find

A′(1) = 10 − 4(1) = 6 > 0,

A′(4) = 10 − 4(4) = −6 < 0.

The results of our sign analysis are summarized on the following number line.

A′(h)

h0 55

2

0+ −

Our sign analysis of A′(h) implies that A has a maximum value at h = 5

2
.

Because A is increasing on [0, 5

2
] and decreasing on []5

2
, 5], we see that this is

a global maximum on the domain. The resulting dimensions of the rectangle
are h = 5

2
= 2.5 meters and w = 10 − 2h = 10 − 2(2.5) = 5 meters. The area

of the rectangle will be A = 12.5 square meters. �

Example 12.1.8 The fitness example resulted in an objective function

F = −0.005f2 + f

and a physical domain f ∈ [0, 200]. Complete the optimization to find the
number of offspring that will maximize the fitness.

Solution. To find the global maximum of F (f), we first compute the deriva-
tive,

F ′(f) = −0.005(2f) + 1 = −0.01f + 1.

The root F ′(f) = 0 occurs at f = 100. Our sign analysis uses test intervals
[0, 100) and (100, 200]. We compute the sign of F ′(f) at sample points f = 0
and f = 200:

F ′(0) = −0.01(0) + 1 = 1 > 0,

F ′(200) = −0.01(200) + 1 = −1 < 0.

The results of our sign analysis are summarized on the following number line.

F ′(f)

f0 200100

0+ −

The First Derivative Test allows us to conclude that F has a local maxi-
mum value at f = 100. Because F is increasing on [0, 100] and decreasing on
[100, 200], this must also be a global maximum. The fitness will be maximized
when each individual reproduces with 100 offspring. �

For our third example, the objective function is not a polynomial. Because
we have not yet established a rule for the derivative in this case, we will use
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technology to find it.

Example 12.1.9 The cost to put trim on our rectangle was found to be the
objective function

C(h) = 3ph +
1000p

h

with a physical domain h ∈ (0, ∞).

Solution. The SageMath computer algebra system allows us to compute
derivatives automatically.

# Tell the system about our variables

var('h','p')

# Define our function

C(h) = 3*p*h + 1000*p/h

# Compute the derivative with variable h

show( diff(C(h), h) )

3*p - 1000*p/h^2

We now know

C ′(h) = 3p −
1000p

h2
.

Like C(h), this derivative is not defined for h = 0 but is otherwise continuous.
We find a root by solving C ′(h) = 0 and finding a common denominator:

3p −
1000p

h2
= 0

3ph2

h2
−

1000p

h2
= 0

p(3h2 − 1000)

h2
= 0

3h2 − 1000 = 0

h2 =
1000

3

h = ±

√

1000

3

Only h = +
√

1000

3
≈ 18.257 is in the domain.

We can test the signs of C ′(h) using h = 10 and h = 20.

C ′(10) = 3p −
1000p

102
= 3p − 10p = −7p < 0

C ′(20) = 3p −
1000p

202
= 3p −

5p

2
=

p

2
> 0

C ′(h)

h0

VA

√

1000

3

0− +

The First Derivative Test shows that C has a local minimum at h =
√

1000

3
.

Because C is decreasing on (0,

√

1000

3
] and increasing on [

√

1000

3
, ∞), this min-

imum is a global minimum.
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We finish by interpreting our mathematics. The question was how to find

the dimensions of the rectangle. Our analysis gave us a value for h =
√

1000

3
≈

18.257 cm. We also need v, which was another dependent variable:

v =
500

h
= 500 ·

√

frac31000 ≈ 27.386 cm.

The minimal cost to trim a rectangle would have a horizontal length of 18.26
cm, one of which has the more expensive trim, and a vertical length of 27.386
cm. �

12.1.3 Summary

• Optimization is the application of finding extreme values to physical
problems. The dependent variable is the quantity that should be as large
or as small as possible. The independent variable(s) are the quantities
we can adjust. The map from the independent variable to the dependent
variable is called the objective function.

• When more than one independent variable is involved, an extra equation
called a constraint allows us to solve for one of the independent variables
in terms of the other.

• A physical domain for the objective function represents the values of the
independent variable(s) that are physically relevant.

12.1.4 Exercises

1. A rectangular frame will be made with horizontal edges that cost $0.50 per
inch and vertical edges that cost $0.40 per inch. What are the dimensions
of a rectangle that will maximize the enclosed area for a total cost of
$20.00?

2. Suppose that the survival probability for a species is related to fecundity so
that it decreases linearly. If each organism has five offspring, the survival
probability is s = 0.9. If each organism has twenty offspring, the survival
probability drops to s = 0.75. How many offspring should the organism
have to maximize fitness?

3. A population of animals has the property that each individual has fewer
offspring per year when the population is bigger. When the population
has 200 individuals, the average number of offspring per individual per
year is 4.8. When the population has 300 individuals, the average num-
ber of offspring per individual per year drops to 4.2. Assuming a linear
relation between the per capita number of offspring per year and the pop-
ulation size, what population size corresponds to the largest total number
of offspring per year? (The total number of offspring equals the per capita
number of offspring times the population size.)

4. A company sells bowling balls. The higher the price the company charges,
the fewer balls are sold. When the price is $50, the company can sell 500
balls per week. When the price is $60, the company can sell 400 balls per
week. Assuming a linear relation between the price and the number of
balls sold per week, find the price for which the company earns the most
revenue per week. (Weekly revenue equals the price per ball times the
number of balls sold per week.)

5. A rectangular container with a square base (top/bottom) is to be manu-
factured. The top and bottom (squares) are made from a material that
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costs $1.50 per square meter while the other four sides (rectangles) are
made from a material that costs $1.00 per square meter. What should be
the dimensions of the container that would maximize the volume and cost
$20 in materials?

6. A rectangular container with a square profile (front/back) is to be manu-
factured. The top and bottom (rectangles) are made from a material that
costs $1.50 per square meter while the other four sides (two squares and
two rectangles) are made from a material that costs $1.00 per square me-
ter. What should be the dimensions of the container that would maximize
the volume and cost $20 in materials?

7. A beverage can is being designed in the shape of a circular cylinder
(volume=πr2h). The top and bottom (circles, area=πr2) are made from
metal that costs $0.01 per square centimeter while the curved wall of the
can (curved rectangle, area=2πrh) is made from metal that costs $0.004
per square centimeter. What should be the radius and height of the can
that would maximize the volume in the container for a can that costs
$0.25 in materials?

8. A rectangular box with a square base and no top needs to contain a volume
of 1000 cubic centimeters. The square base (all sides equal) is made from
a material that costs 10 cents per square centimeter. The other four sides
are made from a material that costs 6 cents per square centimeter. What
dimensions should the box have to minimize the total cost of materials?

9. A beverage can is being designed in the shape of a circular cylinder to
hold 360 cubic centimeters (volume=πr2h). The top and bottom (circles,
area=πr2) are made from metal that costs $0.01 per square centimeter
while the curved wall of the can (curved rectangle, area=2πrh) is made
from metal that costs $0.004 per square centimeter. What should be the
radius and height of the can that would minimize the materials cost?


