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12.3 Integrals and the Method of Substitution

Every rule for differentiation has a corresponding rule for integrals or antidif-
ferentiation. This section focuses on the integration rule that corresponds to
the chain rule.

Recall that the chain rule states that if F (x) is a function with a derivative
F ′(x) and u is any expression (or function), then

d

dx
[F (u)] = F ′(u)

du

dx
.

The corresponding antidifferentiation rule says that if we have a function f(x)
with an antiderivative F (x) (F ′(x) = f(x)), then

∫

f(u)
du

dx
dx = F (u) + C.

Usually, the integrand does not appear so obviously in the form of the chain
rule. The method of substitution provides a formalized method to guide the
process. The method relies on transforming the integral from an integrand in
terms of the independent variable, say x, as a new integral with an integrand
in terms of the chain variable u. For the transformation to be valid, we must
account for the chain rule factor du

dx = u′. We use the substitution rule for
differentials

du = u′ · dx ⇔ dx =
du

u′
.

12.3.1 Substitution and Antiderivatives

To apply the method of substitution, we start with an integral whose integrand
is a function the independent variable (x) which appears to involve a compo-
sition (suggesting a chain rule). Define u to be the formula in the composition

and compute u′. We then substitute dx =
du

u′
in the integral and attempt to

rewrite the entire integrand in terms of only u. We then find antiderivatives
in terms of u and express the result in terms of the orignal variable.

Example 12.3.1 Use the method of substitution to find

∫

e3x dx.

Solution. The integrand e3x involves composition with u = 3x. This is
our substitution variable. Because u′ = 3, we have du = 3dx so that dx =
du

3
. We rewrite the integral in terms of the substitution variable u. After

antidifferentiation using the variable u, we back-substitute our original formula
for u = 3x. The work is shown below.

∫

e3x dx
u = 3x

du = 3 dx

=

∫

eu · du

3

=

∫

1

3
eudu

=
1

3
eu + C

=
1

3
e3x + C

�



532 CHAPTER 12. OTHER STUFF

Example 12.3.2 Use the method of substitution to find

∫ √
3x + 5 dx.

Solution. The integrand
√

3x + 5 = (3x + 5)1/2 involves composition with

u = 3x + 5. Because u′ = 3, we have du = 3dx and dx =
du

3
. We rewrite the

integral in terms of u, find an antiderivative, and then back-substitute to find
a formula in terms of x.

∫ √
3x + 5 dx

u = 3x + 5

du = 3 dx

=

∫ √
u · du

3

=

∫

1

3
u1/2du

=
1

3
· 2

3
u3/2 + C

=
2

9
(3x + 5)3/2 + C

�

Example 12.3.3 Use the method of substitution to find

∫

x sin(x2) dx.

Solution. The integrand x sin(x2) is a product with the composition involv-
ing u = x2. We hope that the product is a result of the chain rule. Because

u′ = du
dx = 2x, we have du = 2x dx or dx =

du

2x
. We rewrite the integral

∫

x sin(x2) dx
u = x2

du = 2x dx

=

∫

x sin(u) · du

2x

=

∫

x

2x
sin(u)du

=

∫

1

2
sin(u)du

= −1

2
cos(u) + C

= −1

2
cos(x2) + C

This problem relied on the factor x and the formula for u′ = 2x having x cancel
so that the transformed integral involves only the substitution variable u. �

Example 12.3.4 Use the method of substitution to find

∫

tan(x) dx.

Solution. The integrand tan(x) can be rewritten as a quotient, or as a prod-
uct involving a negative power,

tan(x) =
sin(x)

cos(x)
= sin(x) · (cos(x))−1.

Once we have the negative power, we see the composition variable u = cos(x).

Because u′ = du
dx = − sin(x), we have du = − sin(x) dx or dx =

−du

sin(x)
. We
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rewrite the integral

∫

tan(x) dx =

∫

sin(x)(cos(x))−1 dx
u = cos(x)

du = − sin(x) dx

=

∫

sin(x)u−1
−du

sin(x)

=

∫

−u−1 du

= − ln(|u|) + C

= − ln(| cos(x)|) + C

�

Sometimes, after substitution, the integrand still involves the original vari-
able. If the formula can be rewritten using only the substitution variable, then
we may still be able to find an antiderivative.

Example 12.3.5 Use the method of substitution to find

∫

x
√

1 − x dx.

Solution. The integrand x
√

1 − x = x(1 − x)1/2 is a product with the com-
position involving u = 1 − x. Because u′ = du

dx = −1, we have du = −dx or
dx = −du. We rewrite the integral

∫

x
√

1 − x dx =

∫

xu1/2 · −du

=

∫

−xu1/2du

If we start with the substitution equation u = 1 − x and solve for x, we find
x = 1 − u and can use this substitution in the integral.

∫

x
√

1 − x dx =

∫

−xu1/2du

=

∫

−(1 − u)u1/2du

As currently written in a product, the antiderivative can not be found. How-
ever, if we multiply this out we can find antiderivatives using the power rule.

∫

x
√

1 − x dx =

∫

−(1 − u)u1/2du

=

∫

−u1/2 + u3/2du

= −2

3
u3/2 +

2

5
u5/2 + C

= −2

3
(1 − x)3/2 +

2

5
(1 − x)5/2 + C

�

The method of substitution does not work (or at least does not help) if the
transformed integral is no closer to finding an antiderivative than the original.

Example 12.3.6 Use the method of substitution to rewrite

∫

e−x2

dx.

Solution. The integrand e−x2

has a composition involving u = x2 and u′ =
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2x. For x > 0 we have the back-substitution

u = x2 ⇔ x =
√

u.

The method of substitution allows us to rewrite this integral.

∫

e−x2

dx
u = x2

du = 2x dx

=

∫

e−u du

2x

=

∫

1

2
√

u
e−u du

While these integrals are equivalent for x > 0, the new integral is no easier
to evaluate than the original. It happens that this integral does not have an
elementary antiderivative formula. �

12.3.2 Substitution and Definite Integrals

When using definite integrals, the Fundamental Theorem of Calculus allows us
to compute a definite integral as the change in an antiderivative. If the method
of substitution is used, our antiderivative will be a function of the substitution
variable u which is a function of the independent variable. Rather than rewrite
the antiderivative in terms of the original variable and then compute the change
of the antiderivative, we can compute the change in the antiderivative in terms
of the variable u.

Suppose that F (x) is an antiderivative of f(x). Now, suppose that u is a
function of x so that u(a) = c and u(b) = d. If we have an integral involving
composition and the chain rule, we find

∫ b

a

f(u(x))u′(x)dx
FTC
= [F (u(x))]ba

= F (u(b)) − F (u(a)) = F (d) − F (c).

This is identical to the integral we would get for the related definite integral

∫ d

c

f(u) du
FTC
=

[

F (u)
]d

c
= F (d) − F (c).

Consequently, using the method of substitution on a definite integral can be
performed by changing the limits of integration to the values of the substitution
variable.

Example 12.3.7 Compute

∫ 3

1

(2x + 1)4 dx.

Solution. The substitution variable is u = 2x+1. When x = 1, u = 2(1)+1 =
3, and when x = 3, u = 2(3)+1 = 7. The substitution step involves u′ = du

dx = 2

so that du = 2dx or dx =
du

2
. In order to keep track of whether the limit of

integration refers to x or u, we need to clearly indicate this when both variables
are involved.

∫ 3

1

(2x + 1)4 dx
u = 2x − 1 x = 1 ⇒ u = 3

du = 2 dx x = 3 ⇒ u = 7

=

∫ x=3

x=1

u4
du

2
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=

∫ 7

3

1

2
u4 du

FTC
=

[ 1

10
u5

]7

3

=
1

10
(75) − 1

10
(35)

=
16564

10
=

8282

5

�

Sometimes the substitution variable is a decreasing function of the indepen-
dent variable. This will cause the apparent order of the limits to reverse. Be
careful that the limits of integration remain in the same starting and ending
position as the original.

Example 12.3.8 Compute

∫ 4

3

x dx

25 − x2
.

Solution. The composition may not be apparent until we think of division
as multiplication by a negative power:

x

25 − x2
= x(25 − x2)−1.

This suggests a substitution u = 25 − x2.

∫ 4

3

x dx

25 − x2

u = 25 − x2 x = 3 ⇒ u = 16

du = −2x dx x = 4 ⇒ u = 9

=

∫ x=4

x=3

x

u

du

−2x

=

∫ 9

16

−1

2

du

u

FTC
=

[

− 1

2
ln(|u|)

]9

16

= −1

2
ln(9) − −1

2
ln(16) =

1

2
(ln(16) − ln(9))

= ln
(

√

16

9

)

= ln(
4

3
)

�


