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12.4 Limits Involving Infinity

We have focused on limits of functions that correspond to points. That is,
we have looked at functions that approach a specific value in the output as
the input variable approaches a certain value in or at the edge of the domain.
In this section, we will consider examples where limits inform us about the
behavior of a function as the input or output grow without bound.

12.4.1 Vertical Asymptotes and Infinite Discontinuities

An asymptote is a curve (most commonly a line) that a graph approaches.
The two most important asymptotes are vertical asymptotes and horizontal
asymptotes. In order to classify each of these, we need to introduce a new type
of limit statement.

The mathematical statement

lim
x→a+

f(x) = +∞

means that the value of f(x) essentially increases without bound for any se-
quence of values from the domain xn ↓ a. More precisely, for any value M (no
matter how large), the sequence of values f(xn) must eventually exceed M ,
f(xn) > M for all n, eventually.

Definition 12.4.1 Infinite Limit. The mathematical statement

lim
x→a+

f(x) = +∞

formally represents the following statement: Given any M , there exists a value
δ > 0 such that f(x) > M for every x ∈ (a, a + δ).

The mathematical statement

lim
x→a+

f(x) = −∞

formally represents the following statement: Given any M , there exists a value
δ > 0 such that f(x) < M for every x ∈ (a, a + δ).

Similar definitions for left limits involve an interval to the left of a, (a−δ, a).
Two-sided limits require left- and right-limits agree. Otherwise, the two-sided
limit does not exist. ♦

The definition of an infinite limit allows for the possibility that the function
might rise and fall so long as overall the function ultimately is rising above every
number imaginable.

Example 12.4.2 Consider the function that is formed by joining line segments
that alternately go up and down over shorter and shorter intervals given in the
graph below. The peaks in the graph are given by the sequence of points
defined by

{(
1

n
, n) : n = 1, 2, 3, . . .}

while the minimum points are defined halfway between these points by

{(
1

2
(
1

n
+

1

n + 1
), n − 1) : n = 1, 2, 3, . . .}.
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If we considered values of x approaching 0 from the right, x → 0+, the
values of f(x) might alternately go up and down. Overall, the value of f(x) in-
creases without bound because the graph will eventually surpass every positive
real number. Consequently, this function has a limit

lim
x→0+

f(x) = +∞.

�

For algebraic functions, infinite limits occur when the formula involves di-
vision such that the numerator has a non-zero limit and the denominator gets
smaller and smaller. Dividing a number by an infinitely small value results in
an infinitely large value. However, the denominator needs to approach zero
monotonically as repeatedly alternating between positive and negative will
make the limit not exist. The limit is either +∞ or −∞ depending on which
signs are involved.

Theorem 12.4.3 Infinite Limits from Division by Zero. Given f(x)

defined as a quotient f(x) = p(x)
q(x) such that p(x) → L and q(x) → 0 as x → a+.

Then f(x) is unbounded as x → a+ with limits determined by the signs of p(x)
and q(x) as follows.

• If p(x) → L > 0 and q(x) → 0+, then lim
x→a+

f(x) = +∞.

• If p(x) → L > 0 and q(x) → 0−, then lim
x→a+

f(x) = −∞.

• If p(x) → L < 0 and q(x) → 0+, then lim
x→a+

f(x) = −∞.

• If p(x) → L < 0 and q(x) → 0−, then lim
x→a+

f(x) = +∞.

• If q(x) changes sign infinitely many times as x → a+, then the limit does

not exist.

We apply the theorem for rational functions by identifying points where
the formula involves division by zero, identifying all removable discontinuities,
and then determining the sign of the function immediately to the left and
right of each infinite discontinuity. Each infinite discontinuity corresponds to
a vertical asymptote.
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Example 12.4.4 Classify all of the discontinuities of f(x) =
x3 − 9x

x4 − x3 − 6x2
.

Solution. Discontinuities occur when the denominator q(x) = x4 − x3 − 6x2

equals zero. We solve for these points by factoring the denominator.

q(x) = x4 − x3 − 6x2

= x2(x2 − x − 6)

= x2(x − 3)(x + 2)

So there are discontinuities at x = 0, x = 3 and at x = −2.
We see if the discontinuities are removable by factoring the numerator

p(x) = x3 − 9x and seeing which factors might cancel.

f(x) =
x3 − 9x

x4 − x3 − 6x2

=
x(x2 − 9)

x2(x − 3)(x + 2)

=
x(x − 3)(x + 3)

x2(x − 3)(x + 2)

=
(x + 3)

x(x + 2)
, x 6= 3.

The discontinuity at x = 3 is removable. The nonremovable discontinuities
at x = 0 and x = −2 will be infinite discontinuities corresponding to vertical
asymptotes.

We finish classifying the removable discontinuity by evaluating the limit.
This limit will be the output value of the simplified (and continuous) formula:

lim
x→3

f(x) = lim
x→3

x + 3

x(x + 2)
=

6

3(5)
=

2

5
.

The infinite discontinuities are analyzed by determining if the unbounded
growth is positive or negative. This is usually different on each side, so we
check the signs. Because we already factored f(x), we can use the factors to
quickly determine a sign analysis summary.

x + 3

x(x + 2)

x−3

0

−2

VA

0

VA
(−)

(−)(−)
(+)

(−)(−)
(+)

(−)(+)
(+)

(+)(+)

We will now interpret the signs as we evaluate the limits at the discontinu-
ities. First consider x → −2. If we attempt to evaluate the limit directly, we
find

lim
x→−2

x + 3

x(x + 2)
→

1

0
,

and this division by zero is precisely the hallmark of infinite limits. Our sign
analysis summary shows that the denominator has a positive sign (−)(−) =
(+) for x → −2− and has a negative sign (−)(+) = (−) for x → −2+.
Consequently, our one-sided limits give

lim
x→−2−

f(x) = lim
x→−2−

x + 3

x(x + 2)
→

1

0+
= +∞

lim
x→−2+

f(x) = lim
x→−2+

x + 3

x(x + 2)
→

1

0−
= −∞
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Using the 0+ and 0− is a notation that reminds us which sign the denominator
has as it approaches zero. We can then use arguments about sign to determine
if the resulting infinity is positive or negative. Because these limits are opposite,
the two-sided limit does not exist.

The work associated with the limits at x → 0 is summarized below.

lim
x→0−

f(x) = lim
x→0−

x + 3

x(x + 2)
→

3

0−
= −∞

lim
x→0+

f(x) = lim
x→0+

x + 3

x(x + 2)
→

1

0+
= +∞

lim
x→0

f(x) does not exist.

The graph y = f(x) is given below. Make note how the infinite limits
correspond to the vertical asymptotes x = −2 and x = 0. Be sure to connect
in your mind how the sign of the infinite limit corresponds to the direction in
which the graph of the function approaches the asymptote.

−4 −2 0 2 4
−10

−5

0

5

10

(3, 2
5 )

x

y

�

The following example does a similar analysis, but keeps comments to a
minimum to demonstrate what work might be normally expected.

Example 12.4.5 Classify the discontinuities of f(x) =
x2 − 4

x4 − 7x3 + 10x2
.

Solution. Factor f(x):

f(x) =
x2 − 4

x4 − 7x3 + 10x2

=
(x + 2)(x − 2)

x2(x2 − 7x + 10)

=
(x + 2)(x − 2)

x2(x − 2)(x − 5)

=
x + 2

x2(x − 5)
, x 6= 2

There is a removable discontinuity at x = 2 with limit

lim
x→2

f(x) = lim
x→2

x + 2

x2(x − 5)
=

4

4(−3)
= −

1

3
.
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There are infinite discontinuities at x = 0 and x = 5 corresponding to vertical
asymptotes.

Sign analysis:

x + 2

x2(x − 5)

x−2

0

0

VA

5

VA(−)
(+)(−)

(+)
(+)(−)

(+)
(+)(−)

(+)
(+)(+)

The limits associated with the vertical asymptote x = 0:

lim
x→0−

f(x) = lim
x→0−

x + 2

x2(x − 5)
=

2

0−
= −∞,

lim
x→0+

f(x) = lim
x→0+

x + 2

x2(x − 5)
=

2

0−
= −∞,

lim
x→0

f(x) = −∞.

The limits associated with the vertical asymptote x = 5:

lim
x→5−

f(x) = lim
x→5−

x + 2

x2(x − 5)
=

7

0−
= −∞,

lim
x→5+

f(x) = lim
x→5+

x + 2

x2(x − 5)
=

7

0+
= +∞,

lim
x→5

f(x) does not exist.

A graph illustrates the results below.
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12.4.2 Horizontal Asymptotes and Limits at Infinity

A function has a horizontal asymptote if the function behaves more and more
like a constant value for large input values. Horizontal asymptotes often have
applications relating to the idea of saturation. For example, when food is
scarce, the total amount of food an individual eats during a day will be pro-
portional to the amount of food available. However, there comes a point where
increasing the amount of food available does not lead to continuing increase in
the amount of food eaten per individual. Consumption saturates.

A common misconception by students is that a function does not cross a
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horizontal asymptote. This likely results from students applying something
they heard about vertical asymptotes and generalizing it to all asymptotes. A
function does not cross a vertical asymptote only because functions must obey
the vertical line test. If the graph crossed a vertical asymptote, it would need
to bend back to approach the asymptote from the other side; that process
violates the definition of a function. Horizontal asymptotes can be crossed
multiple times (even infinitely many times).

When a function has a horizontal asymptote, we are considering the be-
havior of the function as the input x → +∞ or −∞. The value of the limit is
the y-value of the horizontal asymptote.

Definition 12.4.6 Limits at Infinity. The mathematical statement

lim
x→∞

f(x) = L

for a real number L means |f(xn) − L| → 0 for every unbounded increasing
sequence xn ↑ ∞. Formally, this corresponds to the statement: For every ǫ > 0,
there exists M > 0 so that |f(x) − L| < ǫ for every x > M . ♦

Example 12.4.7 Consider the function illustrated in the graph below. Notice
that the function goes above and below the value y = −1 but that the size
of the difference is shrinking in size as x → +∞. Consequently, we would say
y = −1 is a horizontal asymptote and

lim
x→∞

f(x) = −1.

In the other direction, notice that the function approaches another horizontal
asymptote y = 1 as x → −∞, corresponding to a limit

lim
x→−∞

f(x) = −1.
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For functions defined algebraically, we find limits at infinity by identifying
terms that go to zero. These are often identified as being the multiplicative
inverse of terms that are unbounded. If p(x) → ∞, then 1/p(x) → 0. For
algebraic formulas, we can use limit arithmetic involving infinity to compute
determinate limits.



542 CHAPTER 12. OTHER STUFF

∞p = ∞, for p > 0

∞−p =
1

∞p
= 0, for p > 0

b∞ = ∞, for b > 1

b−∞ = 0, for b > 1

b∞ = 0, for 0 < b < 1

b−∞ = ∞, for 0 < b < 1

Example 12.4.8 Determine the limits at infinity for f(x) = 4 − 3e−2x.

Solution. The base e is a number e > 1. So we will use e∞ = ∞ and
e−∞ = 0.

lim
x→∞

f(x) = lim
x→∞

4 − 3e−2x = 4 − 3e−2(∞) = 4 − 3e−∞ = 4 − 0 = 4

lim
x→−∞

f(x) = lim
x→−∞

4 − 3e−2x = 4 − 3e−2(−∞) = 4 − 3e+∞ = 4 − ∞ = −∞

So y = 4 is a horizontal asymptote of f(x) as x → +∞. There is no horizontal
asymptote as x → −∞ since f(x) → −∞. A graph is shown below.
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A limit that appears to have infinities cancel in any way (or zeros cancel
in division) is indeterminate because the arithmetic of limits does not apply
when infinities might cancel. To compute such a limit, must rewrite the formula
to eliminate the indeterminate form. When a limit involves infinity, we factor
out the term that grows to infinity the fastest and seek to simplify.

Example 12.4.9 Determine the limits at infinity for f(x) =
x2 − 3x + 1

4x2 + 5x + 7
.

Solution. The numerator and the denominator involve the term x2 and we
know x2 → +∞ as x → ±∞. This will lead to an indeterminate form ∞/∞.
So we factor out x2 (the fastest growing power) from the numerator and de-
nominator and simplify.

f(x) =
x2 − 3x + 1

4x2 + 5x + 7
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=
x2(1 − 3

x
+ 1

x2 )

x2(4 + 5
x

+ 7
x2 )

=
1 − 3

x
+ 1

x2

4 + 5
x

+ 7
x2

This new representation involves terms that go to zero.

lim
x→∞

f(x) = lim
x→∞

1 − 3
x

+ 1
x2

4 + 5
x

+ 7
x2

=
1 − 0 + 0

4 + 0 + 0
=

1

4

lim
x→−∞

f(x) = lim
x→−∞

1 − 3
x

+ 1
x2

4 + 5
x

+ 7
x2

=
1 − 0 + 0

4 + 0 + 0
=

1

4

So y = 1
4 is a horizontal asymptote of f(x) on both sides.
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