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13.4 Dynamic Models Using Sequences

Overview. A dynamic model considers how quantities change in time. Se-
quences are often useful for such models. Many populations, including some
plants and animals, reproduce on an annual cycle. It thus makes sense to cen-
sus these populations on an annual basis so that the population is measured as
a sequence. Financial models, such as paying off a loan or receiving amortized
payments on a contract, involve interest accrual and periodic payments. In
these cases, the balance of the loan or fund is a sequence relative to the num-
ber of periods. Even for quantities that do not change at such regular periods,
we might take measurements at equal spacings for our own convenience. This
also will result in a naturally observed sequence.

This section focuses on the formulation and interpretation of models using
sequences. We often develop models by considering gain terms and loss terms.
For example, in population growth, gains include births and immigration; losses
include deaths and emigration. The development of a model involves creating
formulas that compute or approximate the size of these terms based on the
state of the system.

We will consider simple models that represent various rates of change. For
a population model, we might consider the rate of births or the rate of deaths.
For a financial model, we might consider the rate of interest or the rate of
payment. Finding simple but meaningful models for different rates allows us
to predict overall changes of the system. We will analyze the overall rate of
change to understand the behavior of the model.

13.4.1 Population Models

Populations are frequently modeled using sequences. Many population are
adapted to reproduce on an annual cycle, so it makes sense that such pop-
ulations might be censused on an annual basis. Even for populations that
reproduce throughout the year, it might still make sense to measure the pop-
ulation at the same time to measure year-over-year growth or decline. Fast
growing populations like bacteria or some species of insects might be measured
on even shorter time scales, such as hourly (bacteria) or weekly (insects). Se-
quences are appropriate in these circumstances because we are interested in
the population size at specific times rather than at all possible times.

There are many variables that determine how a population changes. Some
of these are unpredictable. Unpredictability or randomness is called stochas-
ticity. Populations are subject to environmental stochasticity and demo-
graphic stochasticity. Environmental effects might include temperature fluctu-
ations or variation in rainfall. Demographic stochasticity includes the random-
ness in number of offspring (e.g., seeds or eggs) or randomness in mortality or
the timing of development.

In spite of these random effects, it is often the case that the size of the pop-
ulation can be approximately predicted knowing the population of the previous
year. Recursive equations using projection functions provide the mathemati-
cal framework for modeling these sequences. We will use P as our population
sequence and will develop the projection function f that relates consecutive
values of the population as

Pn = f(Pn−1).

Population sizes change because individuals are entering and leaving the
population. Growth in the population includes births as well as immigration.
Decline in the population includes deaths as well as emigration. The quantities
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measuring the number of births, deaths, and migration events per year are rates
of change. For the state of our system, we include a variable representing the
size of the population as well as a variable for each of the rates of change. In
a more complex model, we might have variables for the number of individuals
at different ages or stages of development. In principle, each state variable
corresponds to its own sequence.

For example, consider a population that only changes from births and
deaths. Let P be the size of the population, let B be the annual birth rate, and
let D be the annual death rate. These variables are each measured annually
and can be considered as sequences. Our index variable t will measure the time
in years. The population sequence will satisfy a recurrence relation

Pt+1 − Pt = Bt − Dt.

This equation simply states that the net change in the population, called the
forward difference ∆Pt = Pt+1 − Pt, is equal to the number of births (a
gain) minus the number of deaths (a loss). We usually consider a reference
time at t = 0 so that the first value in the sequence would be P0.

We will explore a variety of models based on different assumptions for how
the rate of births and deaths relate to the size of the population.

Constant Rates. The simplest model would be that the numbers of births
and deaths are constant values every year. For such a model, the forward
difference is also constant, ∆Pt = ∆P = B − D. The resulting recursive
equation becomes

Pt+1 = Pt + ∆P ,

which we recognize as an arithmetic sequence with an increment ∆P . Using
Theorem 13.2.8, we know the explicit formula for this sequence is given by

Pt = P0 + ∆P · t.

Such a population either increases linearly (if B > D), decreases linearly (if
B < D), or is constant (if B = D).

Example 13.4.1 This example considers a dynamic graph for constant birth
and death rates. There are sliders for the birth rate B and the death rate D
and the initial population is also adjustable. The resulting population sequence
automatically updates to visualize the result. Such a model gives an arithmetic
(linear) sequence.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.2

�

Constant Per Capita Rates. Of course, it is not realistic to think that a
population has the same number of births, regardless of how large the popula-
tion is. Rather, we would expect that the population will see more births when
the size of the population itself is larger. The simplest model for this would be
that the number of births is proportional to the size of the population. That is,
we expect that there is a parameter b so that B = b · P . This parameter is the
proportionality constant and is called the per capita birth rate. The phrase
“per capita” literally means per head. If we rewrote the equation relating B
and P as

b =
B

P
,
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we see that the model is really saying that the total number of births in a
year divided by the population that year is always the same constant. In a
similar way, we might expect the number of deaths to be proportional to the
population size,

D = d · P,

where d is the per capita death rate.
Using constant per capita birth and death rates leads to a new model for

the population. The recurrence relation is defined by

∆Pt = b · Pt − d · Pt = (b − d)Pt.

The recursive equation becomes

Pt+1 = Pt + (b − d)Pt = (1 + b − d)Pt.

We recognize this as the equation of a geometric sequence with the ratio ρ =
1+b−d. Using Theorem 13.2.10, we know the explicit formula for this sequence
is given by

Pt = P0 · (1 + b − d)t.

This form of growth for the sequence is often called Malthusian growth.

Example 13.4.3 This example considers a dynamic graph for constant per
capita birth and death rates. There are sliders for the per capita birth rate b
and the per capita death rate d. The initial population is also adjustable. The
resulting population sequence automatically updates to visualize the result.
Such a model gives a geometric (exponential) sequence.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.4

�

In many circumstances, we may not be as interested in the individual values
of the per capita birth and death rates b and d as we are in their difference
b−d. This quantity is called the net per capita growth rate and is frequently
denoted by the symbol r = b − d. In that case, the explicit formula for the
Malthusian growth model can be rewritten in the same form as compounded
interest,

Pt = P0 · (1 + r)t.

That is, we can interpret r as the decimal value corresponding to percent
change in the population year-over-year.

Example 13.4.5 Suppose a population of 2500 has 400 births and 250 deaths
in the year. Compare the model for constant births and death rates with the
model for constant per capita birth and death rates over the next five years.

Solution. The model for constant birth and death rates assumes that B =
400 and D = 250 are constants. The recursive equation for the population is
then given by

Pt+1 = Pt + 400 − 250 = Pt + 150.

In this model, the population increases by a net number of 150 individuals per
year with an explicit formula given by

Pt = 2500 + 150t.

The model for constant per capita birth and death rates assumes the ratios
b = B

P
= 400

2500
= 0.16 and d = D

P
= 250

2500
= 0.1 are constants. The recursive
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equation for this model becomes

Pt+1 = Pt + 0.16Pt − 0.1Pt = 1.06Pt,

with a corresponding explicit formula given by

Pt = 2500 · 1.06t.

The table and figure below illustrate the growth of these two models. In
the table for the Malthusian model (geometric growth), the model predicts
non-integer values which I have shown to two decimal places. Of course, a
population itself must be integer-valued. When working with mathematical
models, we will leave the values exact until we are ready to interpret.

Year Linear Geometric

t Pt = 2500 + 150t Pt = 2500 · 1.06t

0 2500 2500

1 2650 2650

2 2800 2809

3 2950 2977.54

4 3100 3156.19

5 3250 3345.56
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The arithmetic and geometric models agree at the initial value and after the
first year. But from that point, the geometric model steadily grows faster than
the arithmetic model. The geometric model grows each year by the same per-
centage. Since the population itself is getting larger, the increment of growth
is going to be larger each year. The two models diverge from one another even
more dramatically as time progresses.
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13.4.2 Other Models Using Sequences

The mathematical models introduced for sequences of populations can be ap-
plied and adapted to other situations. The ideas of per capita growth rates
are mathematically the same as those for percentage growth or decay, such as
appear in compounded interest investment problems. Any situation where a
quantity increases or decreases by a fixed amount or by a fixed proportion or
percentage will be modeled using a sequence defined in a similar way.

Example 13.4.6 Car Loan. Suppose you want to buy a car and obtain a
loan for $10000 that includes an annual interest rate of 3%. A bank charges
interest in a way that the annual percentage rate is divided equally into the
months. The monthly rate of 3

12
% applies to the remaining balance of your

loan. If you make a monthly payment of $250, find a model for your remaining
loan balance. Use your model to determine when you pay off the loan and the
total cost of the loan.

Solution. Start by identifying the relevant variables. Our main concern is
the outstanding balance on the loan. Let us use the variable B to represent
our sequence. The initial balance on the loan is B0 = 10000.

Next, we identify all sources to changes in the balance. A payment P on the
loan reduces the loan balance. Interest I on the loan causes the loan balance
to increase. If t represents the number of months since the loan began, then
we have a recurrence relation describing how the loan changes,

∆Bt = Bt+1 − Bt = −Pt + It.

Solving for the new balance gives the recursive equation for the loan balance

Bt+1 = Bt − Pt + It.

For the car loan, the monthly payment is a constant, Pt = P = 250. The
interest accrued each month is proportional to and depends on the current
balance, It = 0.0025Bt.

The model for our loan balance is given by the recursive equation and the
initial value:

Bt+1 = Bt − 250 + 0.0025Bt,
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B0 = 10000.

Our model is not arithmetic or geometric but a combination of the two. The
projection function, f : Bt 7→ Bt+1, is the linear function defined by

f(x) = x − 250 + 0.0025x = 1.0025x − 250.

The values for the loan balance are plotted below, along with a table of values
showing when the loan would be paid off.

t Bt

37 1289.212365

38 1042.435396

39 795.041485

40 547.029088

41 298.396661

42 49.142653

43 -200.734491

44 -451.236327

45 -702.364418
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The computer calculations show that the last month in which there is a
positive balance is month 42. That month, the remaining balance is $49.14,
which we will pay off completely in month 43. The model continues to use the
same rule even after the loan is paid. This explains why the model predicts a
negative balance.

We can compute the total amount paid for this loan. For 42 months, we
paid $250.00, followed by a final payment of $49.14. The total cost of the loan
is

42(250) + 49.14 = 10549.14.

Because the original cost of the car was $10000, we paid $549.14 in interest.
�

Another example that follows similar dynamics is in mixing solutions.

Example 13.4.7 Mixing Solutions. Suppose that you have 2 liters of
salt water that initially has 200 grams salt. You pour out 0.5 liters from your
bottle, replace it with a solution of pure water, and then shake well. This is
repeated, making your bottle less and less salty. Use a sequence to describe
the saltiness of the solution as a function of the number of dilutions.

Solution. Start by identifying the variables. We are interested in the amount
of salt in the water. Use S as the variable representing the sequence of total
salt (grams) in the water. The concentration C would be S/2 (grams per liter).
The initial value is S0 = 200. Let n be the variable representing the number
of dilutions performed, which we will use as our index for the sequence.

Next, identify what causes the change in the solution. Every dilution, a
fraction of the solution is removed, 0.5

2
, along with all salt in that volume.

Since the bottle is well-mixed, we have a fourth of the salt remaining taken out
of the bottle. The replacement water is pure, so no new salt is added back in.

Based on our discussion, the recursive model for the salt includes only a
single loss term:

Sn = Sn−1 − 0.25Sn−1 = 0.75Sn−1,

S0 = 200.
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Thus our model is a simple geometric sequence. We have an explicit solution
using Theorem 13.2.10:

Sn = 200 · 0.75n.

�

13.4.3 Nonlinear Projection Functions

Much more interesting (and surprising) dynamics occur when a sequence is
defined by a nonlinear projection function. To motivate one example where
this might occur, we return to the ideas of per capita growth for a population.

Recall that our earlier discussion used the idea that the net per capita
growth rate was a constant and did not depend on the population size. That
is, the number of births and deaths were simply proportional to the total
population size. However, this is ultimately not physically possible. When a
population gets too large, resources are limited and the population will even-
tually be unable to sustain such rapid growth. Either the per capita birth rate
will decrease or the per capita death rate will increase (or both). Either way,
the net per capita growth rate r = b − d will need to decrease as a function
of population size. Once we say that one variable decreases with respect to
another variable, we can use a mathematical model to capture that idea.

In this case, we want r to be a decreasing function of the population P ,
P 7→ r. The simplest such model would be a linear function with a negative
slope. If we had enough data, we could plot points (P, r) and find a line of
best fit. For now, we will use a parametrized model,

r(P ) = r0 − αP,

where the parameter r0 is called the intrinsic net per capita growth rate
(because that is the growth rate for a very small population before resources
are limited) and α > 0 is the magnitude of the negative slope.

A better parametrization uses the formula for a line given both the inter-
cepts, (P, r) = (0, r0) and (P, r) = (K, 0), so that

r(P ) = r0

(

1 −
P

K

)

.

The value K is called the carrying capacity because for P > K, the growth
rate will be negative (net decrease in population). That is, for any popula-
tion greater than K, the available resources are inadequate to support such a
population.

The final population growth model is based on the model we just found.
Recall that a population grows with a recursive model

Pt+1 = Pt + rPt,

where r is the net per capita growth rate. Using the model given above for
r = r0(1 −

P

K
), we construct a nonlinear model for the population sequence,

Pt+1 = Pt + r0

(

1 −
Pt

K

)

Pt = (1 + r0)Pt −
r0

K
P 2

t
.

This model is called the discrete logistic model. The model only makes
sense when the parameter r0 is in the interval r0 ∈ (0, 3).

Different behaviors for the population arise, depending on the values of
the parameter r0. A Sage script is provided below that will generate plots of
the population sequence for values of the parameters that you specify. The
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following graphs were generated by Sage using an initial value P0 = 5 and
parameter values K = 100 (all plots) and r0 = 0.2, r0 = 1.8, r0 = 2.2 and
r0 = 2.6. In addition, a dynamic graph is given where you can adjust the
parameters using sliders.

# Set the parameter values

r0 = 0.2 # Change this number for different behavior

K = 100 # Change this number for carrying capacity

# Set the initial value

P = 5

# Create what is initially an empty list

data = []

Tmax = 50 # Number of data points to create

# Use a loop repeating the balance update

for t in range(Tmax):

data.append( (t,P) )

# Now update the population

P = P + r0*P - r0/K*P^2

list_plot(data , frame=True ,

axes_labels =['time','population '])

(a) r = 0.2 (b) r = 1.8

(c) r = 2.2 (d) r = 2.6

Figure 13.4.8 Logistic growth with K = 100 with P0 = 5 and varying values
of r.

A deprecated JSXGraph interactive demonstration goes here in interactive output.

Figure 13.4.9 Dynamic graph of the discrete logistic model with variable r
and P0.

13.4.4 Summary

• Sequences can be used to model any quantities that are observed at regu-
lar intervals, with populations and financial balances as typical examples.

• A common strategy for building a recurrence model is to add rates of
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gain and subtract rates of loss,

∆xt = xt+1 − xt = +Gains − Losses.

• For a population, common gain rates include births and immigration;
common loss rates include deaths and emigration.

• A per capita rate is the ratio of the total rate to the population size. It
represents the contribution toward the total rate for one individual. The
total rate equals the per capita rate times the population size.

• Finding models for individual rates or per capita rates in terms of the
population size allows us to formulate a recursive equation for the popula-
tion sequence. Simple examples are to assume constant rates or constant
per capita rates. More complex models might fit models for density-
dependent per capita rates.

• We use computers to find values numerically for a sequence based on the
recursive equation. This might be through a spreadsheet or through a
scripting language like Python. These data allow us to create graphs.

13.4.5 Exercises

1. A population of annual plants has all plants die every year. Before dying,
each plant releases 20 seeds which will grow the following year.

(a) Find a recurrence equation for the population.

(b) If P0 = 10, find P1 and P2 by hand.

(c) Find an explicit formula for the sequence Pt.

2. A population has constant per capita birth and death rates. When the
population is P = 1000, there are B = 200 births per year and D = 250
deaths per year. In addition, this population has a constant immigration
rate of I = 300 individuals per year.

(a) Find a recurrence equation for the population.

(b) If P0 = 1000, find P1 and P2 by hand.

(c) Use a computer to generate a plot of the sequence (t, Pt) for t =
0, . . . , 50.

3. You put $500 in a bank which pays 1% interest, compounded annually.

(a) Find a recurrence equation for the balance B of your account. What
is the initial value, B0?

(b) Compute B1 and B2 by hand.

(c) Find an explicit formula for the sequence Bt.

4. You inherit $50,000, which you immediately invest. Your investment fund
guarantees an annual interest payment of 2%, compounded annually. You
withdraw $2,000 each year to spend.

(a) Find a recurrence equation for the balance of your fund F . What is
the initial value, F0?

(b) Compute F1 and F2 by hand.

(c) Use a computer to generate a table and a plot of the sequence (t, Ft)
for t = 0, . . . , 40.
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(d) How long will the fund last? What was the total value of the inher-
itance?

5. You purchase a house with a home loan of $350,000 with an annual in-
terest rate of 4%, which accrues monthly. You choose to make a monthly
payment of $1,500.

(a) Find a recurrence equation for the balance of your loan L. What is
the initial value, L0?

(b) Compute L1 and L2 by hand.

(c) Use a computer to generate a table and a plot of the sequence (t, Lt)
for a long enough period to determine when the loan is completely
paid.

(d) When will you pay off the house loan? What will have been your
total cost? How much interest will you have paid?

(e) If you increase the monthly payments to $1,600, when will you pay
off the loan? How much interest will you have paid?

6. A pond with 100,000 gallons of water has a stream flowing in and out at
a rate of 5,000 gallons per day. One day, the stream flowing in is polluted
with a chemical of 200 grams per gallon. Assuming that the pond mixes
the water quickly, develop a model for the amount of chemical in the pond
as a daily sequence.

(a) State your variables.

(b) What is your model for how much chemical enters the pond each
day?

(c) What is your model for how much chemical leaves the pond each
day?

(d) State your recurrence relation and the initial value for your sequence.
Determine the resulting recursive equation.

(e) Find an explicit formula for your sequence. How much chemical is
in the pond after 30 days?


