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3.4 Functions Defined by Accumulation

3.4.1 Overview

When a function f(x) is integrable on an interval I and a ∈ I is any value
in that interval, then for any other value b ∈ I, we can compute the definite
integral of f(x) from a to b. Because the value depends on the value of b, we
can think of this definite integral as a function of the upper limit b. We call
such a function the accumulation function of f(x) relative to x = a.

This section introduces how to describe accumulation functions according
to the properties of the integrand (rate) function. We learn the definitions for
increasing and decreasing functions as well as the definition of concavity. Using
the Mean Value Theorem for Integrals, we will be able to classify the behav-
ior of accumulation functions according to the behavior of its corresponding
integrand (rate) function.

3.4.2 Accumulation Functions

In our introduction, we used the variable b as the upper limit of the accu-
mulation function. Because we usually think of x as our default independent
variable, we would like to use x as the upper limit of the integral. But then
we would have the variable x playing two different roles — the upper limit
of the integral and the variable of integration. To keep a single role for the
variable, we always require that when using a variable in a limit of integration,
the integration variable must be chosen to be a dummy variable that does not
have another contextual meaning.

Definition 3.4.1 Accumulation Function. Let f(x) represent a rate of
change or rate of accumulation with independent variable x. The accumu-

lation function A(x) relative to x = a with an initial value A(a) = A0 is
defined as

A(x) = A0 +

∫

x

a

f(z) dz,

where z can be replaced with any other dummy variable (but not x). The
function is defined so long as f is integrable on the interval containing both x

and a. ♦

Once an accumulation function is defined, it can be used to evaluate par-
ticular definite integrals, even if the starting limit does not match the point
used to define the accumulation.

Theorem 3.4.2 Integration as the Difference in Accumulation. Sup-

pose f(x) is integrable on an interval that contains a, b and c. If A(x) is an

accumulation of f(x) relative to x = c,

A(x) = A0 +

∫

x

c

f(z) dz,

then
∫

b

a

f(x) dx = A(b) − A(a).

Notice that in the theorem, the definite integral used the independent vari-
able x as the variable of integration. This is acceptable because the integral
is a specific definite integral and the variable x plays no role other than the
integration variable. We could have written using another dummy variable to
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get
∫

b

a

f(z) dz = A(b) − A(a),

but the result would have been exactly the same.
The integrand function f for an accumulation A is the rate of accumulation

or rate of change. When we learn about derivatives in the next chapter, we
will learn a different conception of rate of change that is called the derivative,
written A′(x). Fortunately, the (((Unresolved xref, reference "fundamental-
theorem-calculus"; check spelling or use "provisional" attribute)))Fundamental
Theorem of Calculus will show that the two different conceptions agree with
one another. That is, for any accumulation function

A(x) = A0 +

∫

x

c

f(z) dz,

the derivative A′(x) and the rate of accumulation f(x) are the same. For con-
sistency of discussion later, we will call f(x) the derivative of the accumulation
function A(x).

Some accumulation functions can be expressed simply using other well
known formulas. For example, we previously discovered the following rules
which we can now identify as accumulation functions.

Theorem 3.4.3 Elementary Accumulation Functions.

∫

x

0

1 dz = x (3.4.1)

∫

x

0

z dz =
1

2
x2 (3.4.2)

∫

x

0

z2 dz =
1

3
x3 (3.4.3)

∫

x

0

z3 dz =
1

4
x4 (3.4.4)

That is, for a constant rate A′(x) = 1, the accumulated change relative to
x = 0 is A(x) = x. Similarly, for the rate A′(x) = x, the accumulated change
relative to x = 0 is A(x) = 1

2
x2.

Example 3.4.4 Suppose A(x) has a rate A′(x) = 2x2 − 3 and initial value
A(0) = 4. Express A(x) in terms of a definite integral. Then apply the
properties of integrals and the elementary accumulation functions to find an
algebraic formula for A(x).

Solution. Because we are given A(0) = 4, we will write

A(x) = A(0) +

∫

x

0

f(z) dz

where f(x) = A′(x) is the desired rate of accumulation. That is,

A(x) = 4 +

∫

x

0

2z2 − 3 dz.

To find the algebraic formula for A(x), we will rewrite the definite integral
as a linear combination of the elementary rates z2 and 1. That is, f(z) =
2z2 − 3 = 2 · z2 − 3 · 1 so that the linearity property of integrals allows us to
use the elementary accumulation functions.

A(x) = 4 + 2 ·
∫

x

0

z2 dz − 3 ·
∫

x

0

1 dz
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= 4 + 2 ·
(

1

3
x3

)

− 3 · (x)

=
2

3
x3 − 3x + 4

�

3.4.3 Monotonicity and Concavity

We first learned to describe the monotonicity of functions in Section 3.1. Recall
from Definition 3.1.1 that a function f is increasing on a set S if for every
x1, x2 ∈ S,

x1 < x2 =⇒ f(x1) < f(x2),

and decreasing if
x1 < x2 =⇒ f(x1) > f(x2).

We can rewrite these inequalities in terms of the increment of change of f :

f(x1) < f(x2) ⇔ f(x2) − f(x1) > 0,

f(x1) > f(x2) ⇔ f(x2) − f(x1) < 0.

That is, an increasing function is associated with positive increments of change
and a decreasing function is associated with negative increments of change.

When a function f(x) is described as an accumulation, it can be written as
the integral of its rate of accumulation or derivative f ′(x). Thus,

f(x2) − f(x1) =

∫

x2

x1

f ′(x) dx.

Knowing the sign of the rate of accumulation can then be used to determine
intervals of monotonicity.

Theorem 3.4.5 Monotonicity Test for Accumulation Functions. Sup-

pose that f(x) is an accumulation function with corresponding rate function

f(′x), and suppose that f ′(x) is continuous on (a, b) with limits at the end-

points.

• If f ′(x) = 0 for all x ∈ (a, b), then f(x) is constant on [a, b].

• If f ′(x) > 0 for all x ∈ (a, b), then f(x) is increasing on [a, b].

• If f ′(x) < 0 for all x ∈ (a, b), then f(x) is decreasing on [a, b].

Proof. Let x1, x2 ∈ [a, b] satisfy x1 < x2. Because f is an accumulation of f ′,
we know that

f(x2) − f(x1) =

∫

x2

x1

f ′(x) dx.

We now treat each case individually.
If f ′(x) = 0 for all x ∈ (a, b), then

f(x2) − f(x1) =

∫

x2

x1

0 dx = 0

and f(x2) = f(x1). Because x1 and x2 were arbitrary, f(x) must have the
same value for any x ∈ [a, b].

If f ′(x) > 0 for all x ∈ (a, b), then (((Unresolved xref, reference "thm-
integral-inequality"; check spelling or use "provisional" attribute))) allows us
to form a bound

∫

x2

x1

f ′(x) dx >

∫

x2

x1

0 dx = 0.
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This guarantees that f(x2) − f(x1) > 0 so that f is increasing on [a, b].
If f ′(x) < 0 for all x ∈ (a, b), then again (((Unresolved xref, reference "thm-

integral-inequality"; check spelling or use "provisional" attribute))) allows us
to form a bound

∫

x2

x1

f ′(x) dx <

∫

x2

x1

0 dx = 0,

so that f(x2) − f(x1) > 0. Thus, f is decreasing on [a, b]. �

Example 3.4.6 Suppose f(x) =

∫

x

1

t2 − 5t + 6 dt. Describe the monotonicity

of f .

Solution. The rate of accumulation for f is given by f ′(x) = x2 − 5x +
6. (Recall the integral uses a dummy variable; we change it back to x for
analysis.) Because f ′ is continuous everywhere, the domain for f is (−∞, ∞).
The starting location x = 1 simply gives the initial value with f(1) = 0.

We find the signs of f ′ by first solving f ′(x) = 0 and then testing the
resulting intervals.

x2 − 5x + 6 = 0

(x − 2)(x − 3) = 0

x − 2 = 0 or x − 3 = 0

x = 2 or x = 3

The intervals to test are (−∞, 2), (2, 3), and (3, ∞). We can test actual values
or consider the signs of the factors on each interval. The results are summarized
on the number-line summary.

f ′(x) = (x − 2)(x − 3)

x2

0

3

0+ − +

We can now interpret the sign analysis of f ′(x).

• f ′(x) > 0 on (−∞, 2) implies that f(x) is increasing on (−∞, 2].

• f ′(x) < 0 on (2, 3) implies that f(x) is decreasing on [2, 3].

• f ′(x) > 0 on (3, ∞) implies that f(x) is increasing on [3, ∞).

A graph of y = f(x) is shown below consistent with this analysis and the initial
value f(1) = 0.

−2 −1 1 2 3 4 5

−2

−1

1

2

x = 2

x = 3

x

y
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Example 3.4.7 Suppose g(x) =

∫

x

1

t − 4

t + 2
dt. Describe the monotonicity of g.

Solution. The rate of accumulation for g is given by g′(x) =
x − 4

x + 2
. The

function g′ has a discontinuity at x = −2 which corresponds to a vertical
asymptote. The domain of the accumulation function is the interval containing
x = 1 up to this discontinuity, which is the interval (−2, ∞).

To determine monotonicity, we need to find the sign of g′(x). Intervals
are determined by the roots and discontinuities. The root is the solution to

g′(x) =
x − 4

x + 2
= 0 which occurs when x − 4 = 0 or x = 4. Using this root and

the discontinuity at x = −2, the intervals to test are (−2, 4) and (4, ∞).

g′(0) =
0 − 4

0 + 2
= −2

g′(6) =
6 − 4

6 + 2
=

1

4

This could be summarized on a number-line as shown below.

f ′(x) =
x − 4

x + 2
x−2

VA

4

0− +

We can now interpret the sign analysis of g′(x).

• g′(x) < 0 on (−2, 4) implies g(x) is decreasing on (−2, 4]. (We can not
include x = −2 because of the vertical asymptote.)

• g′(x) > 0 on (4, ∞) implies g(x) is increasing on [4, ∞).

A graph of g(x) is shown below that is consistent with this analysis.

−4 −2 2 4 6 8 10 12

−10

−5

5

x = 4

x

y

�

Concavity was introduced as a way to describe how a function bends. How-
ever, our original definition of concavity 3.1.13 also involved inequalities, stat-
ing that the rate of change itself was increasing or decreasing. For an accumu-
lation function, the rate of accumulation will control concavity. The following
theorem suggests that we try to think of the rate of accumulation as being, on
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its own, another accumulation of another function which we call the second

derivative of the accumulation.

Theorem 3.4.8 Concavity Test for Accumulation Functions. Suppose

that f(x) is an accumulation function with corresponding rate function f(′x)
and that f ′(x) is itself an accumulation function with its rate function f ′′(x).
Suppose that f ′′(x) is continuous on (a, b) with limits at the endpoints.

• If f ′′(x) = 0 for all x ∈ (a, b), then f(x) is linear on [a, b].

• If f ′′(x) > 0 for all x ∈ (a, b), then f(x) is concave up on [a, b].

• If f ′′(x) < 0 for all x ∈ (a, b), then f(x) is concave down on [a, b].
Proof. We will prove that f ′(x) is constant, increasing, or decreasing, in each
of the respective cases. In fact, this is often adopted as the de facto definition
for concavity. Because f ′ is an accumulation with rate f ′′, we only need to
apply Theorem 3.4.5. The relationship between the monotonicity of f ′ and
the changes of the average rates of change given in the original definition of
concavity requires the Mean Value Theorem. �

At this point, we have not learned how to find the rate so that a function can
be written as an accumulation. This requires computing derivatives. However,
we can use technology to help us out.

Example 3.4.9 Use technology to find derivatives in order to describe the
monotonicity and concavity of f(x) = x3 − 4x.

Solution. We start by writing f(x) as an accumulation. The rate of accu-
mulation f ′(x) is a derivative, which we find using technology.

f(x) = x^3-4*x

Df(x) = derivative(f(x),x)

show(Df(x))

3*x^2-4

Knowing the rate f ′(x) = 3x2−4 and an initial value, say f(0) = 03−4(0) =
0, we can write

f(x) = 0 +

∫

x

0

3z2 − 4 dz =

∫

x

0

3z2 − 4 dz.

Monotonicity is determined by the signs of f ′(x) = 3x2 − 4.

3x2 − 4 = 0

3x2 = 4

x2 =
4

3

x = ±
√

4

3

x = ±
2√
3

We can test the sign of f ′(x) in each resulting interval and summarize the
results on a number line.

f ′(x) = 3x2 − 4

x− 2√
3

0

+ 2√
3

0+ − +
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Interpreting the sign analysis tells us that f(x) = x3 − 4x is increasing on
the interval (−∞, − 2√

3
], decreasing on the interval [− 2√

3
, 2√

3
], and increasing

on the interval [ 2√
3
, ∞).

To analyze concavity, we need to write f ′(x) = 3x2 − 4 as an accumulation
function. Technology helps us find the derivative, which requires one additional
line.

f(x) = x^3-4*x

Df(x) = derivative(f(x),x)

D2f(x) = derivative(Df(x),x)

show(D2f(x))

6*x

Now that we know f ′′(x) = 6x, and we have an initial value f ′(0) = 3(0)2 −
4 = −4, we can write

f ′(x) = −4 +

∫

x

0

6z dz.

The signs of f ′′(x) = 6x change at x = 0, summarized by the sign analysis
below.

f ′′(x) = 6x

x0

0− +

Interpreting the sign analysis of the second derivative, we describe the con-
cavity. The function f(x) is concave down on (−∞, 0] and concave up on
[0, ∞).

A graph illustrating these features is shown below. The curve is colored
differently, depending on concavity. To the left of x = 0 (blue), the curve is
concave down. To the right of x = 0 (orange), the curve is concave up. The
local extremes at x = ± 2√

3
are also labeled.

−3 −2 −1 1 2 3

−15

−10

−5

5

10

15

x = − 2√
3

x = 2√
3

x

�

A point where the concavity of a function changes from concave up to
concave down or vice versa is called a point of inflection, or more simply an
inflection point. We require that an inflection point only occurs at points
where the function is continuous.
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Definition 3.4.10 Suppose that f(x) is a function that is continuous at x = c

and that there are intervals so that f is concave up on (a, c) and concave down
on (c, b), or the reverse, concave down on (a, c) and concave up on (c, b). We
say that f has a point of inflection at x = c. ♦

An inflection point occurs at the points where f ′′(x) changes sign. On a
graph, this is where the curve transitions between bending upward and bending
downward. Inflection points are significant because they represent points where
the rate of change f ′(x) reaches its extreme values.

When we can view a graph of the rate of accumulation (the derivative), we
can interpret the features of that rate to describe the behavior of the accumu-
lation function itself.

Example 3.4.11 The graph of the accumulation rate f ′(x) for a function
f(x) is shown in the figure below. Describe the monotonicity and concavity
and sketch a graph of the accumulation function y = f(x) with initial value
f(0) = 3.

−2 0 2 4 6

−2

0

2

4

x

f
′ (

x
)

Solution. The graph of f ′(x) can be used to determine the signs of f ′(x)
that are used to find the monotonicity of f(x) while the monotonicity of f ′(x)
can be used to find the concavity of f(x). Computing the signed area of the
graph can be used to determine the actual increments of change.

The signs of f ′(x) based on the graph are summarized on the following
number-line summary.

f ′(x)

x−2

0

3

0

5

0− + − +

We interpret this to make the following conclusions about monotonicity:
f(x) is

• increasing on intervals [−2, 3] and [5, 6],

• decreasing on intervals [−3, −2] and [3, 5].

From the graph, we can not determine what happens beyond the visible win-
dow.

In addition, the graph allows us to identify the monotonicity of f ′. We see
that f ′(x) is

• increasing on intervals [−3, 0] and [4, 6],

• constant on the interval [0, 1],

• decreasing on the interval [1, 4].
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We interpret this to give us concavity: f(x) is

• concave up on intervals [−3, 0] and [4, 6],

• linear on the interval [0, 1] with slope f ′(x) = 4,

• concave down on the interval [1, 4].

The definite integral of f ′(x) over an interval, which computes the signed
area, determines the increment of change in f(x). The graph of f ′(x) is made of
straight line segments, so we can compute the integrals using simple geometric
formulas for the areas of triangles, rectangles, and trapezoids.

f(−2) − f(−3) =

∫ −2

−3

f ′(x) dx

= − 1

2
(1)(2) = −1

f(0) − f(−2) =

∫

0

−2

f ′(x) dx

= + 1

2
(2)(4) = 4

f(1) − f(0) =

∫

1

0

f ′(x) dx

= +(1)(4) = 4

f(3) − f(1) =

∫

3

1

f ′(x) dx

= + 1

2
(2)(4) = 4

f(4) − f(3) =

∫

4

3

f ′(x) dx

= − 1

2
(1)(2) = −1

f(5) − f(4) =

∫

5

4

f ′(x) dx

= − 1

2
(1)(2) = −1

f(6) − f(5) =

∫

6

5

f ′(x) dx

= + 1

2
(1)(2) = 1

The initial value f(0) = 3 gives us a starting point for the graph. We
can use the increments computed from the definite integrals to find the values
of f(x) at several specific points. For example, because f(1) − f(0) = 4, we
know that f(1) = 7. If we start by plotting these points, we can sketch the
graph of y = f(x) by including shapes consistent with the monotonicity and
concavity of f . Where the monotonicity changes, the graph of f(x) reaches
an extreme value. Where the concavity changes, the graph of f(x) has an
inflection point. To emphasize concavity, different concavity regions are colored
differently—orange for concave up, blue for concave down, and black for linear.
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)

�

As we conclude this section, make note of the relationship between our un-
derstanding the behavior of sequences in terms of increments and accumulation
sequences with the behavior of accumulation functions in terms of the deriva-
tive or rate of accumulation. Where the behavior of a sequence is described
in terms of a range of index values, the behavior of a function is described in
terms of an interval.

3.4.4 Summary

• An accumulation function A(x) is a function defined using a definite
integral in order to have a given rate of accumulation f(x) and initial
value A(x0) = A0,

A(x) = A0 +

∫

x

x0

f(z) dz.

The integration variable z is a dummy variable and must be different
from the independent variable.

• The accumulation rate f(x) will later be shown (Fundamental Theorem
of Calculus) to be the derivative of the accumulation function A(x) so
that we will write A′(x) = f(x).

• Knowing an accumulation function can be used to compute definite in-
tegrals of the accumulation rate,

∫

b

a

f(x) dx = A(b) − A(a).

See Theorem 3.4.2.

• A function f(x) that can be written as an accumulation with rate (deriva-
tive) f ′(x) has a monotonicity determined by the sign of f ′(x) on inter-
vals.

◦ f ′(x) > 0 on (a, b) implies f(x) is increasing on [a, b]

◦ f ′(x) = 0 on (a, b) implies f(x) is constant on [a, b]

◦ f ′(x) < 0 on (a, b) implies f(x) is decreasing on [a, b]
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• A function f(x) that can be written as an accumulation with rate (deriva-
tive) f ′(x) which itself can also be written as an accumulation f ′′(x)
(second derivative of f) has concavity determined by the sign of f ′′(x)
on intervals.

◦ f ′′(x) > 0 on (a, b) implies f ′(x) is increasing on [a, b] and f(x) is
concave up on [a, b]

◦ f ′′(x) = 0 on (a, b) implies f ′(x) is constant on [a, b] and f(x) is
linear on [a, b]

◦ f ′′(x) < 0 on (a, b) implies f ′(x) is decreasing on [a, b] and f(x) is
concave down on [a, b]

• A point where f(x) changes concavity is called a point of inflection

or inflection point. An inflection point represents where the rate of
accumulation reaches an extreme value.

3.4.5 Exercises

Express each accumulation function with its given rate of accumulation and
initial value as a formula involving a definite integral. Then, using the prop-
erties of definite integrals and the elementary accumulation functions, find the
algebraic formula.

1. Find f(x) with f ′(x) = 2x + 5 and f(0) = 2.

2. Find g(x) with g′(x) = x2 − 4x and g(0) = −5.

3. Find A(x) with A′(x) = x and A(2) = 0.

4. Find P (t) with P ′(t) = 2t + 5 and P (2) = 5.

5. Find Q(t) with Q′(t) = t2 + 5t and Q(1) = 2.

For each accumulation function, describe the monotonicity.

6. f(x) =

∫

x

2

4z − 7 dz

7. g(t) =

∫

t

1

5 − 2x dx

8. A(x) = 2 +

∫

x

−3

9 − u2 du

9. Q(x) = −3 +

∫

x

0

2z

z2 − 4
dz

10. R(t) =

∫

x

−1

2z

3z − 1
dz

Use technology to find derivatives in order to describe the monotonicity and
concavity of each function. Compare your results to a graph of y = f(x).

11. f(x) = x2 − 12x + 32

12. f(x) = x3 − 12x + 4

13. f(x) = x3 + 6x2 − 15x

14. f(x) = e2x − 4x

15. f(x) = 5xe−3x
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16. f(x) =
ln(x)

x

Each figure represents the graph of the derivative or rate of accumulation.
Describe the monotonicity and concavity of the corresponding accumulation
function and sketch a graph consistent with the given initial value.

17.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Given: graph of y = f ′(x) and f(0) = 4.

−4 −2 2 4

−4

−2

2

4

18. Given: graph of y = f ′(x) and f(2) = −1.

−4 −2 2 4

−4

−2

2

4

19. Given: graph of y = f ′(x) and f(1) = 3.
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