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4.1 Introduction to Sequences

Overview. Sequences are often introduced to us as examples for finding basic
numerical patterns. We are shown the start to a list of numbers and asked if
we can identify the next few numbers in the list or are asked to identify the
rule being used to generate the sequence.

1, 5, 9, 13, . . .

2, 6, 18, 54, . . .

Do you see the patterns?

You probably recognized that in the first sequence, the next number would
be 17 because the pattern involved adding 4 to the previous number. In the
second sequence, you probably saw that we were multiplying by the value 3,
so that the next number would have been 162. Not all sequences follow pat-
terns. However, we use examples such as these to motivate the mathematical
definition of a sequence.

We study sequences because they illustrate a number of ideas we will use
in calculus. We eventually want to describe functions as dynamic models.
Dynamic models for sequences are easier to illustrate than for general functions.

This section introduces the basic terminology for sequences. It explains how
a sequence is a special type of function, where the domain is a set of integers.
We will learn about explicit formulas for a sequence and recursive formulas for a
sequence, using arithmetic and geometric sequences as our original motivation.

Later in this chapter, we will explore the dynamic ideas that will motivate
calculus. Sequences that converge to a single value will be used to introduce the
concept of limits. Recursive formulas for sequences will be used to introduce the
ideas of accumulation which ultimately motivates the concept of integration.
The dynamic behavior of a sequence will be analyzed in terms of its increment
sequence which will motivate the calculus concept of the derivative.

4.1.1 Basic Terminology and Notation

A sequence is an ordered collection of numbers. The idea of being ordered is
that we can say what the first number is, what the second number is, and so
forth. To emphasize that the number have assigned positions, a sequence can
be written as an ordered list using parentheses. The entire sequence can be
assigned a symbol, just like a variable, so that a sequence assigned a symbol x

and given by the values 1, 5, 9, 13, etc., would be written

x = (1, 5, 9, 13, . . .).

Because the sequence has a specific order, we use an index as a way of
counting through the sequence. For a given sequence, the term with index 1 is
the first number of the sequence, the term with index 2 is the second number,
the term with index 3 is the third number, and so forth. We use subscripts on
a sequence to refer to an indexed value. So x1 is the first value of sequence x

and x5 refers to the value of the sequence x with index 5.

Example 4.1.1 For the sequence x = (1, 5, 9, 13, . . .) and assuming the pattern
continues, find each of the following values: x1, x3, and x5.

Solution. The ordering of the list of values in the sequence can be made
explicit with a table.
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ordinal position index sequence value

first 1 1

second 2 5

third 3 9

fourth 4 13

fifth 5 17

Of course, you probably thought through the ordering in your head rather
than make a table. From this ordering, we know that x1 = 1, x3 = 9, and
x5 = 17. �

The table in the solution for the previous example illustrates an explicit
association between the index and the sequence value. We could reorganize
this table to create a mapping between values.

n 1 2 3 4 5 6

↓

xn 1 5 9 13 17 21

The mapping can be illustrated using two number lines, one for the index and
the other for the sequence values, with arrows drawn from the index to the
corresponding sequence value. We write n 7→ xn to indicate that we have a
mapping that goes from a value of n to a value xn.

n
-3 -2 -1 0 1 2 3 4 5 6 7

xn

1 5 9 13 17 21 25

Figure 4.1.2 Illustration of the example sequence as a map n 7→ xn.

Another name for a mapping is a function. Sequences are functions whose
domains correspond to an interval of the integers. The domain for a sequence
is the set of possible values for the index. An interval of integers corresponds to
a subset of integers with no gaps. The interval could be finite, as in {4, . . . , 10},
or it could be infinite, as in {4, . . . , ∞}. The usual domain for sequences is
the set of natural numbers D = N = {1, 2, 3, . . . , ∞}. We often also want to
include an initial value corresponding to an index value n = 0, in which case
our domain is the extended natural numbers D = N0 = {0, 1, 2, 3, . . .}.

Definition 4.1.3 Sequence. A sequence x is a function with a domain D

that is an interval of integers and values that are real numbers. We can write
this in symbols using mapping notation,

x : n ∈ D 7→ xn ∈ R.

♦

The mapping notation used in the definition of a sequence is a symbolic
representation of the statement that a sequence is a function or a map. In
particular, it says there is a map (7→) named x that takes a value n from the
set D (n ∈ D) and returns a value xn from the set of real numbers R (xn ∈ R).

Defining a sequence as a function allows us more flexibility in what we
include as sequences. The new definition allows us to have our first index
value start at a value other than 1. It also allows us to use other variables
for our index. The variable used for an index is most often a letter from the
middle of the alphabet.
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Example 4.1.4 Interpret the statement u : k ∈ {0, . . . , 10} 7→ uk ∈ R.

Solution. The map u defines a sequence with index values k going from k = 0
to k = 10. Because we do not have more information, we do not yet know the
values of this sequence. �

Although mapping notation is useful to remind us that a sequence is a map
or function, it can be a little cumbersome to use all the time. Mathematicians
developed a more concise representation that reminds us of an ordered list. If
we consider an interval of integers {ni, . . . , nf } (ni is the initial value in the
interval and nf is the final value in the interval), then the mapping notation

x : n ∈ {ni, . . . , nf } 7→ xn ∈ R

is equivalent to the more compact sequence notation

x = (xn)
nf
n=ni .

Example 4.1.5 Rewrite u : k ∈ {0, . . . , 10} 7→ uk ∈ R using sequence notation.

Solution. We would write u = (uk)10
k=0

. �

Sequence notation can be coupled with an ordered list of values to define a
sequence that follows a pattern with an index that starts at a value other than
1.

Example 4.1.6 Interpret

w = (wj)∞

j=4 = (1, 2, 4, 8, 16, . . .),

assuming the sequence follows a simple pattern.

Solution. This sequence notation tells us that w is a sequence, the index
variable is j, and the interval of integers used for the index starts at j = 4 and
continues through all integers greater than 4. The first few terms in a table
showing the mapping are given below.

j 4 5 6 7 8 9

↓

wj 1 2 4 8 16 32

For this sequence, w1, w2, and w3 are not defined because the values 1, 2, and
3 are not in the domain interval. �

Example 4.1.7 Interpret the sequence

u = (uk)∞

k=−1 = (8, 5, 2, −1, −4, . . .),

assuming the sequence follows a simple pattern.

Solution. We have defined a sequence u with an index variable k. The first
index value is k = −1. The sequence has the following values:

u−1 = 8,

u0 = 5,

u1 = 2,

u2 = −1,

u3 = −4,

u4 = −7.

�
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4.1.2 Graphs of Sequences

We can create a graph anytime we can find a relation between two variables.
For a sequence x, there is a natural choice for the two variables—the index n

and the value xn. The natural graph for a sequence x consists of the points
(n, xn). Because the index comes from a domain that is an interval of integers,
the graph will be a collection of isolated points. This is why a sequence is
called a discrete model.

Example 4.1.8 The graph of the sequence x = (1, 5, 9, 13, . . .) consists of
the points (n, xn). The first few points of the graph—(1, 1), (2, 5), (3, 9), and
(4, 13)—are shown in the figure below. The sequence continues with addition
points for n > 4, but there are no points with n < 1.
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Example 4.1.9 Create the graph for u = (uk)∞

k=−1
= (8, 5, 2, −1, −4, . . .).

Solution. The points in the graph use an index starting at k = −1. They
include (−1, 8), (0, 5), (1, 2), (2, −1), and (3, −4). The sequence continues to
the right of these points.
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4.1.3 Explicit Sequence Representations

We sometimes have an explicit representation for a sequence, where the
value of the sequence is a dependent variable in terms of the index as the
independent variable. The expression defining the dependent variable could be
used with each of the different notations.

Example 4.1.10 Each of the following notations define the same sequence.

x : n ∈ {1, . . . , ∞} 7→ xn =
n

n + 1

x =

(

xn =
n

n + 1

)

∞

n=1
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x =

(

n

n + 1

)

∞

n=1

We could simplify even further and write

xn =
n

n + 1
, n = 1, . . . , ∞,

as the subscript notation xn itself implies we have a sequence.
Writing the sequence value as a dependent variable provides a compact way

of representing the entire sequence. To find a particular value of the sequence,
we substitute the value for the independent variable into the expression.

x1 = x(1) =
1

1 + 1
=

1

2
,

x2 = x(2) =
2

2 + 1
=

2

3
,

x10 = x(10) =
10

10 + 1
=

10

11
.

�

In addition to substitution using actual integer values, we can also use
substitution of expressions that have integer values. This includes using other
variables that have integer values. To do this, we substitute the expression that
appears in the subscript for every occurrence of the index in the expression.

Example 4.1.11 For the sequence defined by

xn =
n

n + 1
, n = 1, . . . , ∞,

find the expressions defined by xk, xn+1, x2n, and xn2 .

Solution. With this interpretation, we can even do composition to find the
sequence value at an index defined by a formula. Substituting the variable k

for the index n in the dependent variable’s expression, we find

xk =
k

k + 1
.

In a similar way, we substitute the expressions n+1, 2n, and n2 in the formula
where n originally appeared to obtain

xn+1 =
(n + 1)

(n + 1) + 1
=

n + 1

n + 2
,

x2n = x(2n) =
2n

2n + 1
,

xn2 = x(n2) =
n2

n2 + 1
.

�

Some sequences have patterns where we can easily find an explicit formula
by recognizing how the numbers defining the sequence values relate to the
index.

Example 4.1.12 Find an explicit formula for the sequence

x = (
1

4
,

1

9
,

1

16
,

1

25
, . . .),

and then find x12 and x2n.



4.1. INTRODUCTION TO SEQUENCES 221

Solution. To find the explicit formula, we look for a pattern in the sequence
and then try to find a relationship between the index and the pattern. Because
the sequence domain was not specified, it is understood to be the natural
numbers N = (1, . . . , ∞). In this case, every sequence value is the reciprocal
of a perfect square. If we look at this pattern with a table showing the index
and the pattern, we find a relationship.

n 1 2 3 4

xn
1

4
= 1

22

1

9
= 1

32

1

16
= 1

42

1

25
= 1

52

The pattern is that the number that is squared is always 1 greater than the
index. So the explicit formula for this sequence is given by

xn =
1

(n + 1)2
, n ∈ {1, 2, 3, 4, . . .}.

Using this explicit formula, we can find the desired values.

x12 = x(12) =
1

(12 + 1)2
=

1

169

x2n = x(2n) =
1

(2n + 1)2

�

Knowing the explicit formula for a sequence, we can compute the values of
the sequence to use in a graph.

Example 4.1.13 Graph the sequence xn =
n

n + 1
, defined for n = 1, 2, 3, . . ..

Solution. This is the sequence discussed above. The plot will include the
points

{(n, xn) : xn =
n

n + 1
, n = 1, 2, 3, . . .} = {(1,

1

2
), (2,

2

3
), (3,

3

4
), (4,

4

5
), . . .}.
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4.1.4 Summary

• Sequences are functions with domains that are intervals of integers. The
independent variable (input) is called the index, and the dependent vari-
able (output) is called the value. The value of a sequence x at index n

is represented using subscripts for the index xn.

• An explicit representation of a sequence x is when the function or
map n 7→ xn can be written with xn as a dependent variable in terms of
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the index n.

• Sequence evaluation with an explicit formula involves substitution of the
index variable by whatever expression appears in the subscript position.

• The standard graph of a sequence x uses the points (n, xn) where n is
chosen from the domain set of the sequence.

4.1.5 Exercises

In the following group of exercises, a sequence is defined. Identify the variable
representing the sequence, the variable representing the index, and the domain
or interval of integers the values of the index come from.

1. u : i ∈ {−3, −2, . . . , 5} 7→ ui ∈ R

2. v : n ∈ {5, . . . , ∞} 7→ vn ∈ R

3. z = (zk)∞

k=2

4. M = (Mt)
10
t=−∞

In the following group of exercises, a sequence with a pattern is given. Identify
the values of the requested terms from the sequence. Create a graph that
includes the first ten values from the sequence.

5. x = (xn)∞

n=1 = (2, 4, 6, 8, . . .)
Find x3, x5, and x7.

6. y = (yk)∞

k=0
= (12, 9, 6, 3, . . .)

Find y1, y4, and y6.

7. w = (wi)
∞

i=−2 = (24, 12, 6, 3, . . .)
Find w0, w2, and w4.

8. P = (Pt)
∞

t=0 = (100, 110, 125, 145, 170, . . .)
Find P1, P4, and P6.

Find an explicit formula for each of the following sequences by identifying
patterns relating the index and the expressions shown for the values.

9. x = (xn)∞

n=0 = (1, 4, 9, 16, 25, . . .)

10. y = (yn)∞

n=1 = ( 1

4
, 2

9
, 3

16
, 4

25
, . . .)

11. z = (zn)∞

n=0 = (0, 1

2
, 2

3
, 3

4
, 4

5
, . . .)

In each of the following exercises, a sequence is defined explicitly. Evaluate the
requested expressions.

12. xn = −3n + 20, n = 0, 1, 2, 3, . . .

Find x0, x1, and x2.
Evaluate xk+2 and xk + 2.

13. yk = 2
k−2

3k , k = 0, 1, 2, 3, . . .

Find y0, y1, and y2.

Evaluate yn+1, yk+1, and
yk+1

yk

.


