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4.2 Increments of Sequences

4.2.1 Overview

In the introductory section of this chapter, we learned that the increments of
a sequence, calculated using the backward difference, can be used to analyze
the monotonicity and concavity of a sequence. Those examples all focused on
sequences with given values.

In this section, we continue our study of increments by looking at sequences
defined explicitly and recursively. For a sequence defined with an explicit for-
mula, we will compute the increments using that formula and index substitu-
tion. For a sequence defined with a projection function, we will compute the
increments as a function of the previous sequence value. Once a formula or
function for the increments has been computed, we will solve inequalities to
characterize the monotonicity and concavity of the sequence.

4.2.2 Increments of Explicit Sequences

When we know the explicit formula for a sequence xn, we can find a cor-
responding formula for the increment of that sequence ∇xn. Recall that an
explicit formula gives us a function mapping the value of the index to the value
of the sequence,

n 7→ xn.

We can think of n and xn as state variables. We can also think of xn−1 as
a state variable, one that represents the previous value of the sequence. The
expanded state of the system becomes (n, xn, xn−1). We want to include yet
another state variable, the increment, ∇xn, which is defined by the backward
difference

∇xn = xn − xn−1.

We can find explicit formulas for these additional variables by making a
substitution on the index. Suppose the map n 7→ xn were a function, S : n 7→
xn. The symbol S(n) would represent the explicit formula for xn. Then S(n−1)
would represent the formula for xn−1, calculated by substituting the expression
n − 1 everywhere the original variable n appeared in the formula. The process
of substituting an expression in the place of the independent variable of a
function is called composition.

Example 4.2.1 Consider the sequence defined explicitly,

x = (3n + 5)∞

n=0.

Find explicit formulas for xn−1 and ∇xn.

Solution. The explicit formula for the sequence, xn = 3n + 5, defines a
function,

S(n) = 3n + 5.

The independent variable in the function is a placeholder for the input expres-
sion,

S(�) = 3� + 5.

We can find the formula for the previous term using a substitution � = n − 1,

xn−1 = S(n − 1) = 3(n − 1) + 5.

Simplifying the expression to a sum, this gives

xn−1 = 3n + 2.
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Formally, because x has its first index n = 0, there is no value x−1. The
formula for xn−1 is only valid for n = 1, 2, . . ..

The increment ∇xn is defined by the backward difference ∇xn = xn −xn−1.
To calculate the backward difference, we substitute the explicit formulas in
place of the state variables xn and xn−1 and simplify:

∇xn = xn − xn−1

=
(

3n + 5
)

−
(

3n + 2
)

= 3n + 5 − 3n − 2

= 3.

Again, this only applies for n = 1, 2, . . .. Because the increments were constant,
we realize that x was an arithmetic sequence with β = 3.

To illustrate the connection between the formulas with which we are now
working and the actual values of the sequence, consider the actual values of
the sequence,

x = (5, 8, 11, 14, 17, . . .).

Now, consider the table created using the explicit formulas above.

n xn xn−1

0 3(0) + 5 = 5 undefined

1 3(1) + 5 = 8 3(1) + 2 = 5

2 3(2) + 5 = 11 3(2) + 2 = 8

3 3(3) + 5 = 14 3(3) + 2 = 11

You should notice how the formula for xn−1 uses the current value of n to
find the value of the previous value of the sequence. �

Example 4.2.2 Consider the sequence defined explicitly,

u = (n2 + 2n)∞

n=0.

Find explicit formulas for un−1 and ∇un.

Solution. The explicit formula for the sequence, un = n2 + 2n, defines a
function,

S(n) = n2 + 2n.

The independent variable in the function is a placeholder for the input expres-
sion,

S(�) = �
2 + 2�.

We can find the formula for the previous term using a substitution � = n − 1,

un−1 = S(n − 1) = (n − 1)2 + 2(n − 1).

Expanding the square and then simplifying the expression to a sum, this gives

un−1 = (n − 1)(n − 1) + 2(n − 1)

= n2 − 2n + 1 + 2n − 2

= n2 − 1

The increment ∇un is defined by the backward difference ∇un = un −un−1.
To calculate the backward difference, we substitute the explicit formulas in
place of the state variables un and un−1 and simplify:

∇un = un − un−1
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=
(

n2 + 2n
)

−
(

n2 − 1
)

= n2 + 2n − n2 + 1

= 2n + 1.

We can illustrate that the formulas using a table. Notice that the formula
un−1 calculate the previous value using the current index, and the formula for
∇un calculates the increment of the sequence using the index.

n un un−1 ∇un

0 (0)2 + 2(0) = 0 undefined undefined

1 (1)2 + 2(1) = 3 (1)2 − 1 = 0 2(1) + 1 = 3

2 (2)2 + 2(2) = 8 (2)2 − 1 = 3 2(2) + 1 = 5

3 (3)2 + 2(3) = 15 (3)2 − 1 = 8 2(3) + 1 = 7

�

4.2.3 Increments of Recursive Sequences

When a sequence is defined recursively, we know that there is a projection
function f : xn−1 7→ xn. That is, the sequence value xn can be found using
the previous value xn−1 through the projection function,

xn = f(xn−1).

Instead of depending on the index, the increment is computed in terms of the
previous value,

∇xn = xn − xn−1 = f(xn−1) − xn−1.

This suggests that we have another function, g : xn−1 7→ ∇xn, defined by

g(x) = f(x) − x,

which projects the increment instead of the new sequence value. We might call
this function the increment projection function.

Example 4.2.3 A sequence is defined recursively by the recurrence relation

xn = 1.25xn−1 − 10.

Find the formula for the increment in terms of xn−1.

Solution. The recurrence relation is already in the form of a recursive equa-
tion with projection function f(x) = 1.25x − 10. The increment ∇xn =
xn − xn−1 is computed by subtracting the xn−1 from the formula for xn:

∇xn = xn − xn−1 =
(

1.25xn−1 − 10
)

− xn−1.

Simplifying this formula gives

∇xn = 0.25xn−1 − 10,

corresponding to an increment projection function g(x) = f(x)−x = 0.25x−10.
We can illustrate the role of these formulas by creating a table of a sequence.

Suppose the initial value is x0 = 20. We can compute both xn and ∇xn in
terms of the previously computed value xn−1.

n xn ∇xn

0 20 undefined

1 1.25(20) − 10 = 15 0.25(20) − 10 = −5

2 1.25(15) − 10 = 8.75 0.25(15) − 10 = −6.25

3 1.25(8.75) − 10 = 0.9375 0.25(8.75) − 10 = −7.8125



226 CHAPTER 4. SEQUENCES AND ACCUMULATION

Suppose we had only used the recursive formula to find the sequence. We
would have found

x = (xn)∞

n=0 = (20, 15, 8.75, 0.9375 . . .).

Then if we found the increments directly, we would have subtracted consecutive
terms and found

∇x = (∇xn)∞

n=1 = (−5, −6.25, −7.8125, . . .),

in agreement with the calculations using the increment projection formula. �

Example 4.2.4 A sequence is defined recursively by a projection function

f(x) = 1.25x − 0.05x2.

Find the formula for the increment as a function of the previous sequence value.

Solution. Knowing the sequence’s projection function, the increment projec-
tion function is given by

g(x) = f(x) − x

= 1.25x − 0.05x2 − x

= 0.25x − 0.05x2.

This means that the increment is computed as g : xn−1 7→ ∇xn, or

∇xn = 0.25xn−1 − 0.05x2
n−1.

�

4.2.4 Analysis of Monotonicity and Concavity

When we have formulas to compute the increments, we can solve inequalities
to determine under what conditions the increments are positive or negative.
We can use the solutions of these inequalities to analyze where a sequence is
increasing or decreasing. If we also compute the second backward difference, or
the increments of the increments, then solving an additional inequality allows
us to analyze the concavity of the sequence.

There are many ways to solve an inequality. One approach is to isolate the
independent variable use balanced operations. Inequalities have a complication
in that balanced multiplication (or division) by a negative number reverses the
inequality. Another approach that works for continuous functions is to solve an
equation in order to create intervals to test. Using the principle of continuity of
formulas, which we will justify later in this text, we can check one point in as a
representative for each interval. Because the first approach only works in some
cases, we will emphasize practicing using the second approach which works
more generally. We will learn later in the text how to deal with inequalities
involving discontinuous functions.

Example 4.2.5 Determine the intervals of monotonicity and concavity for the
sequence

x = (40n − n2)∞

n=0.

Identify any local extremes.

Solution. The explicit formula xn = 40n−n2 allows us to compute formulas
for the previous term and the increment. Notice the use of parentheses to em-
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phasize the role of grouped terms, especially when there will be a subtraction.

xn−1 = 40(n − 1) − (n − 1)2

= 40(n − 1) − (n − 1)(n − 1)

=
(

40n − 40
)

−
(

n2 − 2n + 1
)

= 40n − 40 − n2 + 2n − 1

= 42n − n2 − 41

∇xn = xn − xn−1

=
(

40n − n2
)

−
(

42n − n2 − 41
)

= 40n − n2 − 42n + n2 + 41

= −2n + 41

We can verify that our work looks correct by starting a table and checking
whether the explicit formulas match what the terms should be.

n xn xn−1 ∇xn

0 40(0) − 02 = 0 undefined undefined

1 40(1) − 12 = 39 42(1) − 12 − 41 = 0 −2(1) + 41 = 39

2 40(2) − 22 = 76 42(2) − 22 − 41 = 39 −2(2) + 41 = 37

Checking thes few values in the table gives us confidence that we did the
algebra correctly. The formula for the previous sequence value is matching
what we expect, as is the formula for the increment.

Now that we have a formula for the increments, we want to find the intervals
where the increments are positive or negative. This corresponds to solving
inequalities ∇xn > 0 and ∇xn < 0. The increment is defined for index values
n = 1, 2, . . ..

The approach of solving an inequality by isolating the independent variable
would go as follows. Start with the inequality in terms of the independent
variable n, because we have an explicit definition for the sequence. To solve
∇xn > 0, we use balanced operations to create equivalent inequalities.

∇xn > 0

−2n + 41 > 0

−2n > −41

−2n

−2
<

−41

−2

n < 20 1

2

When we divided both sides by −2 (multiplied by − 1

2
), the equivalent relation

showed a reversed inequality. The other inequality ∇xn < 0 follows the same
steps, resulting in the equivalent inequality

∇xn < 0 ⇔ n > 20 1

2
.

The alternate approach involves solving the equation ∇xn = −2n + 41 = 0.
Solving the equation involves the same steps to give an equivalent equation

∇xn = 0 ⇔ n = 20
1

2
.

We now consider the intervals of values for n on either side of this value.
The intervals are {1, . . . , 20} and {21, . . . , ∞}. The principle for solving the
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inequality is to choose one value from each interval and use it to find the sign
of ∇xn. For example, we can use n = 10 and n = 25.

∇x10 = −2(10) + 41 = 21

∇x25 = −2(25) + 41 = −9

Both methods of solving the inequalities give the same intervals, which
allow us to analyze the monotonicity of the sequence as shown in the table
below.

Sign of ∇xn Monotonicity of xn

Positive on {1, . . . , 20} Increasing on {0, . . . , 20}
Negative on {21, . . . , ∞} Decreasing on {20, . . . , ∞}

Because x is increasing on {0, . . . , 20} and then decreasing on {20, . . . , ∞},
x must have a maximum value at n = 20. The value of the sequence at that
index is

x20 = 40(20) − 202 = 800 − 400 = 400.

To find concavity, we need to compute the second backward difference. This
is computed like other backward differences.

∇2xn = ∇xn − ∇xn−1

=
(

− 2n + 41
)

−
(

− 2(n − 1) + 41
)

=
(

− 2n + 41
)

−
(

− 2n + 43
)

= −2n + 41 + 2n − 43

= −2

The second backward difference is always negative, for n = 2, 3, . . .. Conse-
quently, x is concave down on {0, . . . , ∞}. �

One of the things you might notice is that completing analysis of a se-
quence is an involved process. You might be used to thinking that mathematics
questions should have answers that take a limited amount of work. Complex
questions might therefore seem overwhelming. Have confidence in your ability
and develop a pattern of perseverance. Develop a pattern of big picture steps,
breaking the overall problem into a series of manageable tasks.

Example 4.2.6 Determine the intervals of monotonicity and concavity for the
sequence

z = (n3 − 70n2 + 1000n)∞

n=−∞
.

Identify any local extremes.

Solution. We review the big picture steps.

1. Compute the backward difference ∇zn.

2. Solve the equation ∇zn = 0 to create test intervals.

3. Test the sign of ∇zn in the intervals.

4. Interpret the monotonicity and extreme values of the sequence based on
the sign analysis.

5. Compute the second backward difference ∇2zn.

6. Solve the equation ∇2zn = 0 to create test intervals.

7. Test the sign of ∇2zn in the intervals.
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8. Interpret the concavity of the sequence based on the sign analysis.

The explicit formula zn = n3−70n2+1000n is used to compute the formulas
for the previous term and the increment.

zn−1 = (n − 1)3 − 70(n − 1)2 + 1000(n − 1)

= (n − 1)(n − 1)(n − 1) − 70(n − 1)(n − 1) + 1000(n − 1)

= (n − 1)(n2 − 2n + 1) − 70(n2 − 2n + 1) + 1000n − 1000

= n3 − 3n2 + 3n − 1 − 70n2 + 140n − 70 + 1000n − 1000

= n3 − 73n2 + 1143n − 1071

∇zn = zn − zn−1

=
(

n3 − 70n2 + 1000n
)

−
(

n3 − 73n2 + 1143n − 1071
)

= n3 − 70n2 + 1000n − n3 + 73n2 − 1143n + 1071

= 3n2 − 143n + 1071

Solving the equation ∇zn = 0 to identify our test intervals requires solving
the quadratic equation

∇zn = 3n2 − 143n + 1071 = 0.

We use the quadratic formula:

n =
−(−143) ±

√

(−143)2 − 4(3)(1071)

2(3)

=
143 ±

√
7597

6
.

To find the intervals, we need decimal approximations.

n1 =
143 −

√
7597

6
≈ 9.3065

n2 =
143 +

√
7597

6
≈ 38.3601

The sequence is defined for an index interval {−∞, . . . , ∞}. These two break-
points separate the interval into three test intervals:

{−∞, 9}, {10, . . . , 38}, {39, . . . , ∞}.

We perform sign analysis by choosing a test value for the index n from each
interval and identifying the sign of ∇zn.

n = 0 : ∇z0 = 3(0)2 − 143(0) + 1071 = 1071

n = 10 : ∇z10 = 3(10)2 − 143(10) + 1071 = −59

n = 40 : ∇z40 = 3(40)2 − 143(40) + 1071 = 151

We can interpret these results:

1. Because ∇zn > 0 for all n in {−∞, . . . , 9}, we know zn is increasing on
the interval {−∞, . . . , 9}.

Because ∇zn < 0 for all n in {10, . . . , 38}, we know zn is decreasing on
the interval {9, . . . , 38}.

Because ∇zn > 0 for all n in {39, . . . , ∞}, we know zn is increasing on
the interval {38, . . . , ∞}.
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The turning points correspond to local extreme values. The value z9 is greater
than values to its left and right and is a local maximum. The value z38 is
less than values to its left and right and is a local minimum. Because z is
decreasing on {−∞, . . . , 9} and increasing on {38, . . . , ∞}, we do not yet know
if the sequence surpasses these values to determine global extreme values.

To analyze concavity, we repeat the process for the second backward differ-
ence.

∇zn−1 = 3(n − 1)2 − 143(n − 1) + 1071

= 3(n2 − 2n + 1) − 143(n − 1) + 1071

= 3n2 − 6n + 3 − 143n + 143 + 1071

= 3n2 − 149n + 1217

∇2zn = ∇zn − ∇zn−1

=
(

3n2 − 143n + 1071
)

−
(

3n2 − 149n + 1217
)

= 3n2 − 143n + 1071 − 3n2 + 149n − 1217

= 6n − 146

Solving the equation ∇2zn = 0 gives

6n − 146 = 0

6n = 146

n =
146

6
=

73

3
n = 24 1

3

The intervals to test are separated by this value, {−∞, . . . , 24} and {25, . . . , ∞}.
Test one point in each interval:

∇2z0 = 6(0) − 146 = −146,

∇2z25 = 6(25) − 146 = 4.

Now we can interpret our results.

• Because ∇2zn < 0 for all n in {−∞, . . . , 24}, we know zn is concave down
on the interval {−∞, . . . , 24}.

Because ∇2zn > 0 for all n in {25, . . . , ∞}, we know zn is concave up on
the interval {23, . . . , ∞}.

�

4.2.5 Behavior of Recursive Sequences

When a sequence is defined recursively through a projection function, we found
that we could create an increment projection function g(x) = f(x) − x. Be-
cause this does not directly give us any information about the index, we can
not describe the interval of integers on which the sequence is increasing or de-
creasing. Instead we can describe which sequence values will lead to an increase
or decrease in the next step.

Theorem 4.2.7 Suppose a sequence u is defined recursively with f : un−1 7→
un.
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• If f(x) > x, or equivalently f(x)−x > 0, then un = x implies u increases
on {n, n + 1}.

• If f(x) < x, or equivalently f(x)−x < 0, then un = x implies u decreases
on {n, n + 1}.

• If f(x) = x, or equivalently f(x) − x = 0, then un = x implies u is
constant. In this case, we call x a fixed point of f and an equilibrium

for u.

Concavity requires comparing two increments, so we would need two projec-
tions into the future. Given un, we know un+1 = f(un) and un+2 = f(un+1).
Using composition of the function with itself, we discover

un+2 = f
(

f(un)
)

.

We can now compute the increments:

∇n+1 = un+1 − un

= f(un) − un

∇n+2 = un+2 − un+1

= f
(

f(un)
)

− f(un)

If un = x, then the second backward difference is computed as

∇2un+2 = ∇un+2 − ∇un+1

=
(

f
(

f(x)
)

− f(x)
)

−
(

f(x) − x
)

= f
(

f(x)
)

− 2f(x) + x.

Sign analysis on this formula allows us to answer questions about concavity
involving consecutive increments.

Theorem 4.2.8 Suppose a sequence u is defined recursively with f : un 7→
un+1. Define the second-order increment projection function h(x) = f

(

f(x)
)

−
2f(x) + x.

• If h(x) > 0, then un = x implies u is concave up on {n, n + 1, n + 2}.

• If h(x) < 0, then un = x implies u is concave down on {n, n + 1, n + 2}.

• If h(x) = 0, then un = x implies u is linear (constant increments) on
{n, n + 1, n + 2}.

Example 4.2.9 For a recursive sequence u defined by projection function
f(x) = 1.25x−10, describe the conditions for which the sequence is increasing,
decreasing, concave up, or concave down.

Solution. The increment projection is defined by g(x) = f(x) − x = 0.25x −
10. We analyze the inequalities g(x) > 0 and g(x) < 0 by solving the equation
g(x) = 0 and then doing sign analysis on resulting test intervals.

0.25x − 10 = 0

0.25x = 10

x = 40

We now know that x = 40 is an equilibrium for the sequence. Our test intervals
are x < 40 and x > 40.

g(30) = 0.25(30) − 10 = −2.5
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g(50) = 0.25(50) − 10 = 2.5

Consequently, the sequence will decrease for an initial value un < 40 and
increase for an initial value un > 40.

Analysis of concavity is more involved, requiring the calculation of the
composition f

(

f(x)
)

. We emphasize the importance of thinking of this as sub-
stitution, with f(�) = 1.25� − 10. For an initial value un = x, the projection
of the sequence value un+1 is given by

un+1 = f(x) = 1.25x − 10

Projecting a second step into the future for un+2 is given by

un+2 = f
(

f(x)
)

= f(1.25x − 10)

= 1.25(1.25x − 10) − 10 = 1.5625x − 12.5 − 10

= 1.5625x − 22.5

This gives the increment ∇un+2 = un+2 − un+1 as

∇un+2 =
(

1.5625x − 22.5
)

−
(

1.25x − 10
)

= 0.3125x − 12.5.

The second backward difference is therefore

∇2un+2 = ∇un+2 − ∇un+1

=
(

0.3125x − 12.5
)

−
(

0.25x − 10
)

= 0.0625x − 2.5.

Solving the equation ∇2un+2 = 0 (Try it!) gives x = 40, giving us the same
test intervals as our sign analysis for monotonicity.

x = 0 (x < 40) : ∇2un+2 = 0.0625(0) − 2.5 = −2.5

x = 50 (x > 40) : ∇2un+2 = 0.0625(50) − 2.5 = 0.625

Consequently, the sequence will be concave down for an initial value un < 40
and concave up for an initial value un > 40.

To visualize these results, consider the sequence with three different initial
values.

u0 = 30 : u = (30, 27.5, 24.375, 20.46875, . . .)

u0 = 40 : u = (40, 40, 40, 40, . . .)

u0 = 50 : u = (50, 52.5, 55.625, 59.53125, . . .)

Graphs of these sequence are shown below. The first sequence is decreasing
and concave down. The second sequence is constant (an equilibrium value).
The third sequence is increasing and concave up.
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Figure 4.2.10 The sequence u defined by un+1 = 1.25un − 10 and selected
initial values.
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4.2.6 Summary

• Explicit formulas for the values of a sequence x, n 7→ xn, allow us to com-
pute an explicit formula for the increments n 7→ ∇xn using the backward
difference

∇xn = xn − xn−1

using substitution, or composition, with the expression n−1 in place of the
index variable n. An explicit formula for the second backward difference
n 7→ ∇2xn can be computed using substitution and the formula of the
increments,

∇2xn = ∇xn − ∇xn−1.

• Using an explicit formula n 7→ ∇xn, we can use inequalities to perform
sign analysis of the increments ∇xn. Sign analysis provides intervals for
the index n where ∇xn > 0, ∇xn = 0, and ∇xn < 0. We use these
intervals to determine intervals for the index n where xn is increasing,
constant, or decreasing, respectively.

• Using an explicit formula n 7→ ∇2xn, we can use inequalities to perform
sign analysis of the increments ∇2xn. Sign analysis provides intervals for
the index n where ∇2xn > 0, ∇2xn = 0, and ∇2xn < 0. We use these
intervals to determine intervals for the index n where xn is concave up,
linear, or concave down, respectively.

• A general strategy for solving inequalities with continuous functions is to
solve the corresponding equation. Solutions to the equation create the
end-points of test intervals. We then choose one test point from each
interval to determine the inequality and every other value in the interval
will satisfy the same relation as the test point.

In simple cases, an inequality can be solved more quickly by isolating
the variable using balanced operations. Multiplication or division by a
negative value reverses any inequalities. Multiplication by an expression
is problematic if that expression might be negative—the inequality then
reverses only for some values of the variable. In such cases, the general
strategy is preferred.

• Using a recursive formula defined by a projection function f : xn 7→ xn+1,
we can create an increment projection function g : xn 7→ ∇xn+1, defined
by

g(x) = f(x) − x.

Sign analysis on g(x) determines intervals for initial values at which
a sequence would increase or decrease to the next value. Any values
where g(x) = 0 are called fixed points of the projection function f and
correspond to equilibrium values of the recursive sequence.

It is also possible to create a second-order increment projection function
h : xn 7→ ∇2xn+2 defined by

h(x) = f
(

f(x)
)

− 2f(x) + x.

Sign analysis of h(x) determines initial values where the first two incre-
ments are increasing, constant, or decreasing.

4.2.7 Exercises

Practice using composition (i.e., substitution) to find explicit formulas. Sim-
plify to a form that is a sum of terms.
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1. If an = 3n − 5, find an−1 and an+1.

2. If bk = k2 − 20k, find bk−1 and bk+1.

3. If cn = 2n2 − 15n + 3, find cn−1 and cn+1.

For the each sequence, compute the explicit formula for the backward differ-
ence, perform sign analysis, and interpret the monotonicity of the sequence.
Identify any local extreme values.

4. x = (25 − 4k)∞

k=0

5. z = (j2 − 40j + 10)∞

k=0

6. u = (40n − 3n2)∞

n=−5

7. w = (k3 − 500k)∞

k=−∞

For the each sequence, compute the explicit formula for the second backward
difference, perform sign analysis, and interpret the concavity of the sequence.
(These are the same sequences as in the previous exercise group.)

8. x = (25 − 4k)∞

k=0

9. z = (j2 − 40j + 10)∞

k=0

10. u = (40n − 3n2)∞

n=−5

11. w = (k3 − 500k)∞

k=−∞

For each recursively defined sequence, identify initial values that will result in
an increase or a decrease or are equilibrium values.

12. un+1 = 50 − 3un

13. vk+1 = 1.1vk − 30

14. wn+1 = 1.2wn − 0.04w2
n

15. zn+1 = 4zne−0.2zn

16. Pn+1 = 50Pn

Pn+20
, restricted to P ≥ 0.

Applications.

17. You are about to receive some money (inheritance, lottery, etc.) and
plan to invest it in an account that earns 5% annually, compounded
quarterly. Your plan is to withdraw $9000 each quarter ($3000 per
month). You want to analyze what will happen to your investment.

• Create a recursive definition for a sequence that represents the
quarterly balance of your investment.

• Analyze the monotonicity and concavity of your sequence.

◦ What size of an investment would result in an equilibrium?

◦ What will happen to the investment if you receive less than
the equilibrium amount?

◦ What will happen to the investment if you receive more
than the equilibrium amount?

18. A population of at risk birds has a constant per capita yearly death
rate of 1 death per four individuals, d = 0.25. The per capita yearly
birth rate is observed to be a decreasing function of the population
size P , modeled by a linear function b = 0.5 − 0.0002P .
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• Create a recursive definition for a sequence that represents the
annual population size.

• Analyze the monotonicity of your sequence.

◦ What is the equilibrium population size?

◦ What will happen to the population if it begins below equi-
librium?

◦ What will happen to the population if it begins above equi-
librium?

• Create a cobweb diagram for the sequence. How does the cobweb
diagram relate to your analysis of monotonicity? How does the
cobweb diagram relate to concavity

Suppose that the tail feathers of these birds are valuable so that
poachers come and kill an additional 100 birds per year.

• Create a recursive definition for a new sequence that models the
natural births and deaths as well as the illegal harvesting by
poachers.

• Analyze the monotonicity of the modified sequence. What does
the model predict for the consequence of poaching?


