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4.3 Accumulation Sequences

Overview. One of the most important mathematical ideas in calculus is that
of an accumulation of change for physical quantities. As we have been learning
about sequences, we have talked about how we can define sequences using
explicit formulas and using recursive definitions. More recently, we have looked
at how the increments of a sequence can help us understand the behavior of
a sequence. For some sequences, we learned that patterns in the increments
could be used to find additional terms in a sequence.

We are now ready to think about this more generally. Given any sequence
of values, we wish to find that sequence for which the given sequence matches
the increments. We call the sequence that we are finding the accumulation

sequence of the given sequence.

In this section, we formally define and discuss the theory of accumulation
sequences. Summation notation is introduced. We establish conditions that
guarantee two sequences are equivalent. Then we illustrate applying these con-
ditions to demonstrate that the explicit and recursive definitions for arithmetic
and geometric sequences are equivalent.

4.3.1 Accumulation of Change

There are many examples of quantities where we track changes to the quantity
rather than repeated measure the quantity itself. Consider a bank balance. We
do not count our money every month. Instead, we add up all of our deposits
and withdrawals and use them to adjust our record for the balance. Similarly,
consider a population under study. It could be very costly to count all of
the individuals every month. If instead we could track how many births and
deaths occurred during the month, we could calculate a new population count
by adding births and subtracting deaths.

Example 4.3.1 At the start of the year, you had $1500 in an account. Suppose
that the sequence

W = (Wm)12
m=1 = (240, 300, 270, 450, 250, 310, 360, 270, 320, 300, 350, 480)

represents the total of monthly withdrawals from the account, and the sequence

D = (Dm)12
m=1 = (280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280)

represents the total of monthly deposits into the account. Find the sequence
of monthly balances in the account.

Solution. Let B represent the monthly balance. Before any months pass, we
have a balance of 1500 dollars. This gives an initial value B0 = 1500. We wish
to define the sequence B = (Bm)12

m=0.
After one month, our account has had $240 withdrawn and $280 deposited.

The balance after the end of the month is thus given by

B1 = B0 − W1 + D1 = 1500 − 240 + 280 = 1540.

Once we have the balance after one month, we can repeat this process for the
other eleven months.
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m (month) Bm (balance in dollars)

0 1500

1 1500 − 240 + 280 = 1540

2 1540 − 300 + 280 = 1520

3 1520 − 270 + 280 = 1530

4 1530 − 450 + 280 = 1360

5 1360 − 250 + 280 = 1390

6 1390 − 310 + 280 = 1360

7 1360 − 360 + 280 = 1280

8 1280 − 270 + 280 = 1290

9 1290 − 320 + 280 = 1250

10 1250 − 300 + 280 = 1230

11 1250 − 350 + 280 = 1160

12 1160 − 480 + 280 = 960

�

When we create a sequence of values based on knowing the increments, we
are creating what we call an accumulation sequence.

Definition 4.3.2 Given a sequence x = (xk)n

k=m
, we say u is an accumula-

tion sequence of x if u = (uk)n

k=m−1 with ∇uk = xk. ♦

4.3.2 Equivalent Sequences

A given sequence of increments has infinitely many different accumulation se-
quences which differ in their initial value. However, for a given initial value and
sequence of increments, the resulting accumulation sequence is unique. That
is, any two sequences that have the same initial value and increments sequences
that are equal for all values, then the sequences themselves are equal for all
values.

Theorem 4.3.3 Uniqueness Conditions for Accumulation Sequences.

Given two sequences u and w. If um = wm and ∇uk = ∇wk for all k > m,

then uk = wk for all k ≥ m.
Proof. In mathematics, to prove that every statement from a sequence of
statements is true, we often use an approach called the Principle of Math-

ematical Induction. This requires demonstrating that the first statement in
the sequence is true, and then showing that anytime one of the statements is
true, the subsequent statement must also be true.

This theorem is perfectly suited to apply mathematical induction. The
sequence of statements we wish to prove is

uk = wk, k = m, m + 1, . . . .

The first statement in the sequence, um = wm is true by assumption—one con-
dition is that the sequences u and w have the same initial values. The inductive
step is to go from an arbitrary statement in the sequence of statements to the
next. So suppose uk = wk for some index k in {m, m + 1, . . .}. We know that
∇uk+1 = ∇wk+1 by the assumption that the sequences have equal increments.
We now use substitution twice:

uk+1 = uk + ∇uk+1

= wk + ∇wk+1

= wk+1.

This shows that uk+1 = wk+1 whenever uk = wk. By mathematical induction,
the entire sequence of statements must be true. �
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Example 4.3.4 Consider the explicitly defined sequence x = (3k + 4)∞

k=1 and
the sequence y = (yn)∞

n=1 defined recursively with an initial value y1 = 7 and
iteration yn = yn−1 + 3 for n = 2, 3, . . .. Show that x and y represent the same
sequence.

Solution. To apply Theorem 4.3.3, we need to show that the sequences have
the same initial value and the same increments. We just show the two initial
values and verify they are the same.

x1 = 3(1) + 4 = 7

y1 = 7

We next compare the increments. Using the explicit formula for x, we find

∇xk = xk − xk−1

=
(

3k + 4
)

−
(

3(k − 1) + 4
)

= 3k + 4 − (3k − 3 + 4)

= 3.

Using the recursive formula for y, we find

∇yk = yk − yk−1 = 3.

The sequences x and y have the same initial value and the same increments.
Therefore, they have all the same values: xk = yk for all k = 1, 2, . . .. �

Theorem Theorem 4.3.3 can be generalized from having two sequences with
equal increments to two sequences sharing any recurrence relation involving the
previous term. For example, a geometric sequence has a recurrence relation
xn = ρxn−1, so that the increment using the relation itself depends on the
previous term, ∇xn = (ρ − 1)xn−1.

Theorem 4.3.5 Suppose u and w are two sequences with common initial val-

ues, um = wm. If there is a sequence of projection functions fk so that u and

w satisfy the same relations,

uk = fk(uk−1)

and

wk = fk(wk−1),

then uk = wk for all k = m, m + 1, . . ..

For a recursively defined sequence, the sequence of projection functions
would all be the same function.

Example 4.3.6 Consider the explicitly defined sequence x = (10 · 1
2k )∞

k=1 and
the sequence y = (yn)∞

n=1 defined recursively with an initial value y1 = 5 and
iteration yn = 1

2 yn−1 for n = 2, 3, . . .. Show that x and y represent the same
sequence.

Solution. To apply Theorem 4.3.5, we need to show that the sequences have
the same initial value and the satisfy the same recurrence relations. The initial
values are:

x1 = 10 ·
1

21
= 5,

y1 = 5.

We next compare the recurrence relations. We know that y has projection
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function f : yn−1 7→ yn = 1
2 yn−1. We need to show that x satisfies the same

relation, xk = 1
2 xk−1. Using the explicit formula for x, we compute both sides

of the recurrence equation and show they are equivalent.

xk = 10 ·
1

2k

1

2
xk−1 =

1

2
· 10 ·

1

2(k−1)

= 10 ·
1

2
·

1

2(k−1)

= 10 ·
1

2(k−1)+1

= 10 ·
1

2k

Comparing the formulas, we see that xk = 1
2 xk−1.

The sequences x and y have the same initial value and the same sequence
of recurrence relations. Therefore, they have all the same values: xk = yk for
all k = 1, 2, . . .. �

We end our discussion of showing two sequences are equivalent by establish-
ing an explicit formula for sequences defined recursively by a linear projection
function,

xn = αxn−1 + c,

with α 6= 1. When α = 1 we have an arithmetic sequence, which is a sequence
we already know. When c = 0, we have a geometric sequence. The projection
function f : xn−1 7→ xn is defined by the formula f(x) = αx + c. The fixed
point x∗ is the solution to

αx + c = x ⇔ x∗ =
c

1 − α
,

defined only for α 6= 1.

The linear projection function can be rewritten in terms of the fixed point
using slope α and point (x∗, x∗) as

f(x) = x∗ + α(x − x∗).

This means that the recurrence relation can be written

xn = x∗ + α(xn−1 − x∗) ⇔ xn − x∗ = α(xn−1 − x∗).

Consequently, xn − x∗ is a geometric sequence with ratio α. This allows us to
find an explicit formula for xn.

Theorem 4.3.7 Explicit Formula for Linear Recursive Sequences.

Suppose xn is defined recursively by the equation

xn = αxn−1 + c

with α 6= 1. Then xn is defined explicitly by a shifted geometric sequence

xn = x∗ + (x0 − x∗) · αn = x∗ + (x1 − x∗) · αn−1,

where x∗ =
c

1 − α
is the equilibrium of the sequence.
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4.3.3 Summation Notation

In mathematics, the idea of adding terms from a sequence appears so frequently
that a special notation, called summation notation or sigma notation for the
Greek letter sigma Σ, was created to represent the sum.

Definition 4.3.8 Summation Notation. Given any sequence x and integers
m ≤ n, the sum of terms xk with index k satisfying m ≤ k ≤ n is written

n
∑

k=m

xk = xm + xm+1 + · · · + xn.

The starting index m is called the lower limit of the sum while the ending
index n is called the upper limit. ♦

The sequence of terms being added is often given as an explicit function of
the index. In that case, the explicit formula is used in place of the sequence
name in the summation.

Example 4.3.9 Evaluate the following sums.

1.

7
∑

k=3

[2k + 3]

2.

4
∑

k=1

1

k2 + k

Solution.

1. The sum

7
∑

k=3

[2k + 3] involves the increment sequence ak = 2k + 3 and is

the sum of terms with index from 3 to 7:

a3 = 2(3) + 3 = 9, a4 = 2(4) + 3 = 11, a5 = 13, a6 = 15, a7 = 17.

Consequently, we can find the sum

7
∑

k=3

[2k + 3] = 9 + 11 + 13 + 15 + 17 = 65.

2. The sum

4
∑

k=1

1

k2 + k
involves an increment sequence bk =

1

k2 + k
. The

index values involved go from 1 to 4 so that we find

4
∑

k=1

1

k2 + k
=

1

11 + 1
+

1

22 + 2
+

1

32 + 3
+

1

42 + 4

=
1

2
+

1

6
+

1

12
+

1

20

=
30

60
+

10

60
+

5

60
+

3

60

=
48

60
=

4

5
.

�

An accumulation sequence is closely related to summation. The accumula-
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tion sequence is a new sequence formed by starting with an initial value and
then adding one increment at a time. Suppose x = (xk)∞

k=1 and u is the corre-
sponding accumulation sequence with initial value u0. We can write each term
of u as the initial value plus a partial sum of the increments.

u1 = u0 + x1 = u0 +
1

∑

k=1

xk

u2 = u0 + x1 + x2 = u0 +

2
∑

k=1

xk

u3 = u0 + x1 + x2 + x3 = u0 +

3
∑

k=1

xk

...

In general, we have

un = u0 +

n
∑

k=1

xk.

Notice how the index for u appears as the upper limit of the summation and
that the index of summation is a different variable. The index of summation
can be any other unused variable, so that we might have instead written

un = u0 +

n
∑

i=1

xi.

Also, notice that for consistency, we require

0
∑

k=1

xk = 0,

regardless of the sequence x to indicate that no terms have been added in the
summation. In general, we have the following representation.

Theorem 4.3.10 If x = (xk)n

k=m
and u is the accumulation sequence with

initial value um−1, then we can write

uk = um−1 +
k

∑

i=m

xi,

for i = m, . . . , n.

Example 4.3.11 Write the accumulation sequence z = (zn)∞

n=0 with initial
value z0 = 4 and an increment sequence a = (3, 5, 7, 9, 11, 13, . . .) as a summa-
tion with an explicit formula for the increments.

Solution. The sequence z has initial value 4 which corresponds to index 0,

z0 = 4.

For index values n > 0, the sequence is computed with an accumulation of
values from the sequence a.

z1 = 4 +

1
∑

k=1

ak = 4 + 3 = 7
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z2 = 4 +
2

∑

k=1

ak = 4 + 3 + 5 = 12

z3 = 4 +

3
∑

k=1

ak = 4 + 3 + 5 + 7 = 19

z4 = 4 +

4
∑

k=1

ak = 4 + 3 + 5 + 7 + 9 = 28

We need an explicit formula for the sequence k 7→ ak. We recognize that
a is an arithmetic sequence with a1 = 3 and constant increment ∇ak = 2. By
Theorem 13.2.8, we know ak = a1 + 2(k − 1) = 2k + 1. Using this explicit
formula in the summation, we find

zn = 4 +

n
∑

k=1

(2k + 1).

�

Example 4.3.12 Show that
n

∑

k=1

(2k − 1) = n2 for n = 0, 1, . . ..

Solution. There are two distinct sequences appearing in the equation— the
sequence defined by the accumulation,

un =

n
∑

k=1

(2k − 1),

and the sequence defined by an explicit formula. As un includes only a sum-
mation, we must have a zero initial value, u0 = 0.

Because we know that xk = 2k − 1 is the increment sequence for u, we only
need to show that w has the same initial value and increment sequence. The
initial value of w is

w0 = 02 = 0,

in agreement with that of u0 = 0. The increment is computed using the
backward difference.

∇wn = wn − wn−1

= n2 − (n − 1)2

= n2 − (n2 − 2n + 1)

= n2 − n2 + 2n − 1

= 2n − 1

The explicit formula for the increment of w is the same as that for u. Conse-
quently, we know that un = wn for all n = 0, 1, 2, . . .. �

4.3.4 Summary

• An accumulation sequence is a sequence generated from an initial value
and a given sequence of increments.

• If x is the sequence of increments and u is the accumulation sequence,
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then u satisfies the recurrence relation

un = un−1 + xn.

• If two sequences share the same initial value and the same increments,
then the sequences are identical (Theorem 4.3.3). More generally, if
two sequences share the same initial value and sequence of recurrence
relations involving the previous term, then the sequences are identical
(Theorem 4.3.5).

• Summation notation (sigma notation) provides a method to communicate
the sequence of increments as well as the range of index values. The
index variable is sometimes called the dummy variable because any other
variable could be used in its place.

• Every accumulation sequence u can be represented as the initial value
added to the summation of its increments xk with the index variable
appearing as the upper limit,

un = um +

n
∑

k=m+1

xk.

4.3.5 Exercises

Find the first six terms of the indicated accumulation sequence for the given
increment sequence. Clearly indicate the relevant index values.

1. Find u with increments defined by x = (xk)∞

k=2 = (−4, −2, 0, 2, 4, 6, . . .)
and initial value 21.

2. Find w with increments defined by y = (yi)
∞

i=0 = (1, −1, 1, 1, −1, −1, 1, 1, 1, −1, . . .)
and initial value 0.

In the following problems, show that explicit definition and recursive definition
define the same sequence. If not, explain why.

3. xn = 3n − 5 for n = −2, −1, 0, . . . defines the same sequence as xn =
xn−1 + 3 with x−2 = −11.

4. xn = 4 + 3(n+1)

4n for n = 0, 1, 2, . . . defines the same sequence as xn =
3
4 xn−1 + 1 with x0 = 7.

5. xn = 2n+1 − 1 for n = 0, 1, 2, . . . defines the same sequence as xn =
xn−1 + 2n with x0 = 1.

6. xn = n2 − n for n = 0, 1, 2, . . . defines the same sequence as xn =
xn−1 + n with x0 = 0.

7. xn = 1
2 (3n − 1) for n = 0, 1, 2, . . . defines the same sequence as

xn+1 = xn + 3n with x0 = 0. Note: The recursive formula uses a
forward recurrence, so either compare forward differences or rewrite
the recursive equation as a backward recurrence.

Determine the intervals of monotonicity and concavity for each sequence de-
fined by the given increments.

8. ∇xn = 4n − 70 for n = 1, 2, . . . with x0 = 20.

9. ∇xn = 50 − 3n for n = 1, 2, . . . with x0 = −10.

10. ∇xn = n2 − 30n for n = 1, 2, . . . with x0 = 0.
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11. ∇xn = −100 + 75n − n2 for n = 1, 2, . . . with x0 = 0.

For each of the following summations, write down the sum of individual terms.
Then compute the value of the sum. For example,

∑5
k=2 2k would be 2(2) +

2(3) + 2(4) + 2(5) = 4 + 6 + 8 + 10 = 28.

12.

15
∑

k=12

3k

13.

2
∑

k=−2

2k

14.

5
∑

k=2

2k + 1

5k

Rewrite the following sums in summation notation. Find an appropriate for-
mula for the increment sequence and identify the correct lower and upper limits
of the sum.

15. 15 + 20 + 25 + 30 + · · · + 90

16. 21 + 25 + 29 + 33 + · · · + 61

17. 1
4 + 2

9 + 3
16 + · · · + 12

169

18. The sum of all four digit odd numbers.

19. The sum of all two-digit squares, 16 + 25 + 36 + 49 + 64 + 81.

20. The sum of all three-digit odd squares.

Show that the summation formulas below are valid for n = 0, 1, 2, . . . by show-
ing that two sequences are equal to one another.

21.

n
∑

k=1

(2k) = n2 + n.

22.

n
∑

k=1

(4k − 3) = n(2n − 1).

23.

n
∑

k=1

(6k2 − 2k) = 2n2(n + 1).


