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4.6 Calculating Sequence Limits

4.6.1 Overview

In the previous section, we learned about limits of sequences. Unfortunately,
using a table of values to find a limit only allows us to estimate its value.
A finite table alone can never clearly show whether a perceived pattern will
continue or change after the values shown. It would be helpful to have some
rules for finding limits based on the formula rather than numerical patterns.

This section establishes the rules of limits of sequences. Many limits can
be calculated by identifying terms that are unbounded in the limit. We learn
about how infinity behaves in the context of limit arithmetic. We also learn
about indeterminate limit forms.

4.6.2 Infinite Limits

In order to compute limits of sequences, we begin with sequences that grow
without bound, which is written xn → ∞ when the sequence grows in a pos-
itive direction or xn → −∞ when the sequence grows in a negative direction.
Arithmetic sequences with increments β 6= 0 (recall Theorem 13.2.8) must ei-
ther steadily increase (positive increments β > 0) or steadily decrease (negative
increments β < 0). The special case that β = 0 is somewhat boring, as this
corresponds to a constant sequence so that the limit is just the constant value.

Theorem 4.6.1 Limit of an Arithmetic Sequence. An arithmetic se-
quence with explicit formula xn = a+c·n (for constants a and c) has unbounded
growth when c 6= 0. The corresponding limit statements are

lim
n→∞

(a + cn) = +∞ (c > 0)

lim
n→∞

(a + cn) = −∞ (c < 0)

lim
n→∞

(a) = a (c = 0)

Geometric sequences are a little more complicated, depending on the ratio
ρ (recall Theorem 13.2.10) and the initial value. Repeated multiplication by a
number whose magnitude is larger than 1 makes the resulting magnitude in-
crease without bound. Repeated multiplication by a number whose magnitude
is smaller than 1 makes the resulting magnitude converge to 0. If the ratio ρ is
negative, then the sign of the sequence values will alternate between positive
and negative. This is summarized by another theorem.

Theorem 4.6.2 Limit of a Geometric Sequence. A geometric sequence
with explicit formula xn = a·ρn and ratio ρ is unbounded when |ρ| > 1, meaning
that |xn| → ∞.

• If ρ ≤ −1, xn alternates sign and the limit does not exist.

• If ρ > 1, then the limit depends on the sign of a:

lim
n→∞

a · ρn = +∞, (a > 0),

lim
n→∞

a · ρn = −∞, (a < 0).

• If |ρ| < 1 (i.e., −1 < ρ < 1), then lim
n→∞

a · ρn = 0.
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Example 4.6.3 Find the appropriate limits of the following sequences.

1. lim
n→∞

3 − 4n

2. lim
n→∞

100 + 0.02n

3. lim
n→∞

−3 · 1.05n

4. lim
n→∞

100 · (−0.75)n

5. lim
n→∞

5 · (−1.5)n

Solution.

1. The sequence xn = 3 − 4n is recognized as the explicit formula of an
arithmetic sequence with increment c = −4. Since this is a negative
increment, the sequence decreases without bound. So we write

lim
n→∞

3 − 4n = −∞.

2. The sequence xn = 100 + 0.02n is arithmetic with increment c = 0.02.
Since the increment is positive, the sequence increases without bound
and we write

lim
n→∞

100 + 0.02n = +∞.

3. The sequence xn = −3 ·1.05n is a geometric sequence with ratio ρ = 1.05.
Because ρ > 1, the sequence grows without bound. Furthermore, because
the terms are all negative, we have a limit

lim
n→∞

−3 · 1.05n = −∞.

4. The sequence xn = 100 · (−0.75)n is a geometric sequence with ratio
ρ = −0.75. Because the ratio is negative, the signs of the terms alter-
nate between positive and negative. However, since |ρ| = 0.75 < 1, the
magnitude of the terms converges to zero so that

lim
n→∞

100 · (−0.75)n = 0.

5. The sequence xn = 5 · (−1.5)n has a negative ratio ρ = −1.5. Since |ρ| >

1, the terms have alternating signs but grow in magnitude. Consequently,
lim

n→∞

5 · (−1.5)n does not exist.

�

4.6.3 Arithmetic of Infinity

Once we know how to identify when sequences have unbounded terms, we can
use that information to find limits of related sequences. We can think of this
as the arithmetic of infinity. Infinities can add and multiply but should never
be subtracted or divided from one another. The signs of arithmetic involving
infinity behave like for numbers, such as having a negative times a positive be
negative.

The most important principle to remember is that infinities should never
cancel one another. Cases where the formula looks like infinities might cancel
are called indeterminate. This includes trying to cancel infinity by multiplying
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by zero. An indeterminate limit form means that the value of the limit can not
be determined without further analysis that resolves the apparent cancellation.

Theorem 4.6.4 Arithmetic Rules for Infinity. Suppose unbounded se-
quences are combined using arithmetic operations. Then the following arith-
metic relating to limits will be valid, where c will represent a positive number.

• Adding a number to infinity has no effect:

+∞ ± c = +∞

−∞ ± c = −∞

• Multiplying infinity by a non-zero number is still infinite, but changes
sign if multiply by a negative number:

c · ±∞ = ±∞

−c · ±∞ = ∓∞

• Adding infinities of the same sign are infinite. Don’t cancel opposite
infinities.

+∞ + +∞ = +∞

−∞ + −∞ = −∞

+∞ + −∞ = indeterminate

• Multiplying infinities are infinite, and negative if opposite signs.

+∞ · +∞ = +∞

−∞ · −∞ = +∞

+∞ · −∞ = −∞

• The reciprocal of infinity is zero, but they can’t cancel.

1

±∞
= 0

0 · ±∞ = indeterminate

±∞

±∞
= indeterminate

0

0
= indeterminate

The previous theorem was stated somewhat imprecisely in order to con-
vey the idea of arithmetic of infinities without being bogged down by formal
notation relating to limits. Each statement really is about a limit.

As an example, the arithmetic on infinity +∞ + +∞ = +∞ would more
carefully be stated as follows. Suppose that there are two sequences xn and yn

such that xn → +∞ and yn → +∞. The sequence defined by un = xn + yn

has limit

lim
n→∞

xn + yn = +∞.

The shorthand notation of performing arithmetic with infinity allows this
to be simplified as writing

lim
n→∞

xn + yn = +∞ + +∞ = +∞.
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The intermediate step +∞ + +∞ is not truly arithmetic, but points out that
xn → +∞ and yn → +∞, and since those sequences were added, the final limit
is also +∞. We are substituting limits of individual terms into the formula
defining the expression. As long as the arithmetic involves no cancellation of
infinities, it will result in a correct statement.

To deal with indeterminate forms, we usually need to try to rewrite the
formula in a new way so that the cancellation is avoided. The most common
approach for rewriting is to factor out a dominant term. When there are
infinities trying to cancel, we identify which of the terms should dominate and
we factor that expression from both terms and simplify.

Example 4.6.5 Determine the following limits, if possible.

1. lim
n→∞

3 +
5

2n

2. lim
n→∞

n2 − 3n

5n − 1

3. lim
n→∞

1 + 2n

3 + 5n

Solution.

1. The sequence xn = 3 + 5
2n

is the sum of terms 3 and 5
2n

. The constant
sequence has a limit 3 → 3 (since it never changes). The geometric
sequence 5

2n
= 5 · ( 1

2
)n has a ratio |ρ| < 1 so that 5

2n
→ 0. The form of

the limit (using the terms) is

lim
n→∞

3 +
5

2n
= 3 + 0,

and since this does not involve any cancelation of infinities, will give the
correct limit,

lim
n→∞

3 +
5

2n
= 3 + 0 = 3.

2. The sequence un =
n2 − 3n

5n − 1
is a quotient of terms n2 − 3n and 5n − 1.

To find the limit, we explore the terms individually first.

Because n2 = n · n, we know n2 → +∞ · +∞ = +∞. Similarly, the
arithmetic sequence 3n → +∞. However, the difference n2 − 3n would
have a limit of the form +∞ − ∞, which is a cancellation of infinities.
As written, n2 − 3n is an indeterminate form.

Our strategy will be to rewrite this as a product, and the best practice
is to factor out (divide out) the greatest power of n (dominant term),

n2 − 3n = n2(
n2

n2
−

3n

n2
) = n2(1 −

3

n
).

From this, we find

3

n
→

3

+∞
= 0 ⇒ 1 −

3

n
→ 1 − 0 = 1.

Since we already know n2 → +∞, we have the limit of the numerator

lim
n→∞

n2 − 3n = lim
n→∞

n2(1 −
3

n
) = +∞ · 1 = +∞.
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The term in the denominator 5n − 1 is an arithmetic sequence (linear
function) with increment (slope) c = 5. We know

lim
n→∞

5n − 1 = +∞.

Unfortunately, that means our limit form as a quotient is itself an inde-
terminate form,

lim
n→∞

n2 − 3n

5n − 1
=

+∞

+∞
.

We can not cancel infinities, so we must rewrite our formula.

For this example, I worked out the numerator separately to make a point
about that term itself being an indeterminate form. In practice, our
strategy will be to apply that factoring principle to the entire formula at
one step. This is illustrated below.

The problem can be solved up if we just factor out from the numerator
and denominator the dominant term (greatest power) and simplify as
needed.

lim
n→∞

n2 − 3n

5n − 1
= lim

n→∞

n2(1 − 3
n

)

n(5 − 1
n

)

= lim
n→∞

n(1 − 3
n

)

5 − 1
n

=
+∞ · (1 − 3

∞
)

5 − 1
∞

=
+∞ · 1

5
= +∞.

3. The sequence wn =
1 + 2n

3 + 5n
, by quick inspection, involves the geometric

sequences 2n and 5n, both of which grow exponentially so that wn → +∞

+∞
.

This indeterminate form involves canceling infinities, so we must rewrite
the formula. Following the method of the previous example, we factor
out the dominant term, in this case the geometrically growing powers.

lim
n→∞

1 + 2n

3 + 5n
= lim

n→∞

2n( 1
2n

+ 2n

2n
)

5n( 3
5n

+ 5n

5n
)

= lim
n→∞

2n( 1
2n

+ 1)

5n( 3
5n

+ 1)

This is still indeterminate form +∞

+∞
, so we rewrite

2n

5n
= ( 2

5
)n, which is

a geometric sequence with ratio ρ = 2
5

satisfying |ρ| < 1.

lim
n→∞

1 + 2n

3 + 5n
= lim

n→∞

2n( 1
2n

+ 1)

5n( 3
5n

+ 1)

= lim
n→∞

( 2
5
)n( 1

2n
+ 1)

3
5n

+ 1

=
0 · (0 + 1)

0 + 1
=

0

1
= 0

�
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Knowing how to find limits of sequences with explicit formulas, we can also
find limits for recursive sequences whose explicit formulas are known.

Example 4.6.6 Find the limit of a recursive sequence u defined by

un = 0.8un−1 + 20

and initial value u0 = 50.

Solution. A sequence that has a linear projection function, involving both
multiplication by a ratio and the addition of an increment, has a shifted ge-
ometric sequence as its explicit formula. The equilibrium value is found by
solving the fixed point equation.

0.8x + 20 = x

20 = 0.2x

100 = x

Thus, the equilibrium value is u∗ = 100.
The explicit formula is a geometric sequence with ratio α = 0.8 shifted by

the equilibrium,

un = u∗ + (u0 − u∗)(0.8)n

= 100 + (50 − 100)(0.8)n

= 100 + −50(0.8)n

Be careful not to violate the order of operations by adding the 100 and −50 or
multiplying the −50 and 0.8,

Using this explicit formula, we can find the limit of the sequence. The
geometric sequence has a limit 0 because the ratio has magnitude smaller than
1.

lim
n→∞

un = 100 + (−50)(0) = 100

That is, the sequence converges to the equilibrium value. �

Example 4.6.7 Find the limit of the sequence defined by the recursive equa-
tion

xn+1 = 1.05xn − 20

and initial value x0 = 300.

Solution. Find the fixed point by solving the equation x = 1.05x − 20.

x = 1.05x − 20

−0.05x = −20

x = 400

Using the fixed point x∗ = 400 and the growth factor α = 1.05, we can write
down the explicit formula,

xn = x∗ + (x0 − x∗)αn

= 400 + (300 − 400)1.05n

= 400 − 100 · 1.05n

The geometric term with ratio α = 1.05 grows without bound. The limit of
the sequence can be found:

lim
n→∞

xn = lim
n→∞

400 − 100 · 1.05n
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= 400 − 100 · +∞

= 400 − ∞

= −∞.

The sequence will decrease without bound. �

4.6.4 Limit Applications to Modeling

With these tools, we can analyze sequences associated with physically mean-
ingful models. Limits tell us about the long-term behavior. As time progresses,
the sequence will progressively get closer and closer to the limit.

For example, the concentration of a drug in a patient taking repeated doses
can be modeled by a sequence. A limit of this sequence can tell us something
about what will happen to that concentration if the dosing continues for an
extended amount of time.

Example 4.6.8 Suppose a patient begins taking 500 mg of a drug every four
hours. However, the body metabolizes 60% of the drug in the body every four
hours. Find a formula for the amount of drug in the body immediately after
each dose and then determine the limiting value.

Solution. The patient’s body starts with no drug. Immediately after the
first dose, there are 500 mg. Four hours later, 60% has been removed and then
another dose is added in. If we let Dn be the sequence of drug mass in the
body as a function of the number of doses n, then this is modeled recursively
by the equation

Dn+1 = Dn − 0.6Dn + 500,

with initial value D1 = 500.
This model has a linear projection function f(x) = 0.4x + 500 and corre-

sponding fixed point

0.4x + 500 = x ⇔ x =
500

0.6
=

2500

3
.

The explicit formula, using Theorem 4.3.7, is given by

Dn =
2500

3
+ (500 −

2500

3
) · 0.4n−1 =

2500

3
−

1000

3
· 0.4n−1.

Because the slope of the projection function α = 0.4 has magnitude less than
1, the limiting value is the fixed point x∗ = 2500

3
≈ 833.33. Thus, if the patient

continues to take the drug, the amount in the body immediately after each
dose will be approximately 833.33 mg. (Immediately before the dose, it must
have been approximately 333.33 mg.) �

In the coming chapters, we will learn about the definite integral. The
calculation of an integral is as a limit of a summation. The following example
illustrates how such calculations are performed.

Example 4.6.9 Find lim
n→∞

n
∑

k=1

(

1 +
3k

n

)

·
3

n
.

Solution. There are two major steps needed for this problem: (i) find an
explicit formula for the summation that depends only on n and (ii) compute
the limit of that explicit formula.

To compute the explicit formula for the summation, we need to remember
that the variable n is a constant with respect to the summation index k. We
will rewrite the formula of the sequence in summation to be a sum so that we
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can use the linearity property.

n
∑

k=1

(

1 +
3k

n

)

·
3

n
=

n
∑

k=1

3

n
+

9k

n2

=
3

n
·

n
∑

k=1

1 +
9

n2
·

n
∑

k=1

k

=
3

n
· n +

9

n2
·

n(n + 1)

2

= 3 +
9(n + 1)

2n

= 3 +
9n + 9

2n

We see that the summation is itself a sequence involving an index n. We

find the limit of that sequence. The fraction
9n + 9

2n
will be indeterminate form

∞

∞
, so we will factor out the dominant term of n from top and bottom.

lim
n→∞

n
∑

k=1

(

1 +
3k

n

)

·
3

n
= lim

n→∞

3 +
9n + 9

2n

= lim
n→∞

3 +
n(9 + 9

n
)

2n

= lim
n→∞

3 +
9

2
+

9

2n

= 3 +
9

2
+

9

∞

= 3 +
9

2
+ 0

=
15

2
= 7

1

2

�

4.6.5 Summary

• Arithmetic sequences with non-zero increments are unbounded. Geomet-
ric sequences are unbounded when the ratio has magnitude greater than
1 and converge to zero when the ratio has magnitude less than 1.

• Sequence limits obey the standard rules of arithmetic, including for infi-
nite limits, with the exception that any formula that would cancel infinity
are indeterminate. (See Theorem 4.6.4) Indeterminate means the limit
can not be determined from simple arithmetic but requires rewriting in
another form.

◦ ∞ − ∞: rewrite by factoring out dominant term

◦
∞

∞
: factor out dominant term in numerator and denominator, look

to simplify

◦
0

0
: try to factor and simplify

◦ 0 · ∞: use negative powers to rewrite as fraction, then treat as 0
0

or
∞

∞

Look for terms in the limit that vanish:
1

∞
= 0.
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4.6.6 Exercises

Use limit arithmetic to find the exact value for each limit. If the limit does
not exist, explain why.

1. lim
n→∞

3 − 4n

2. lim
n→∞

−5 +
n

200

3. lim
n→∞

3 · ( 2
5
)n

4. lim
n→∞

−3 · (−0.8)n

5. lim
n→∞

4 − 5 · (1.05)n

6. lim
n→∞

5 − (−1.5)n

7. lim
n→∞

5 + 3n

5 − n2

8. lim
n→∞

5 + 3n2

5 − n2

9. lim
n→∞

5 + 3n3

5 − n2

10. lim
n→∞

2n − 3n

7 + 2 · 3n

11. lim
n→∞

3 · 2n − 5 · 3n

1 + 2 · 5n

Find an explicit formula for each sequence. Then determine the limit of the
sequence.

12. xt = 1.05xt−1 − 10 with x0 = 500.

13. xk+1 = 0.8xk + 12 with x1 = 5.

14. yn = −1.5yn−1 + 5 with y0 = 2.

Use the properties and elementary formulas for summation to find a formula
for the summation in order to compute the limit.

15. lim
n→∞

n
∑

k=1

5k

n2

16. lim
n→∞

n
∑

k=1

k2

n3

17. lim
n→∞

n
∑

k=1

(

2 +
3k

n

)

·
3

n

18. lim
n→∞

n
∑

k=1

(

1 +
2k

n

)2

·
2

n

Applications of sequences.

19. When a patient starts taking a drug, there is no drug in the blood.
The prescription is to take 250 mg every six hours. Then, during the
six hours between doses, the body metabolizes 20% of whatever drug
is in the body.
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Find a recursive formula using a linear projection function for the
sequence of drug levels with an index counting the total number of
doses. Clearly state the initial value. Find an explicit formula for the
sequence and determine the limit. Is there a steady state amount of
drug in the body?

20. A pond has been polluted by a stream. The pond holds 12,000 gallons
of water and the stream replaces 900 gallons per day. The stream has
been carrying the chemical pollutant at a concentration of 0.4 g

gal
and

now the pond has that same pollution level. With stream cleanup,
the chemical pollutant in the stream has just been reduced to a con-
centration of 0.1 g

gal
.

Find a recursive formula using a linear projection function for the
sequence of pollutant levels (total mass) in the pond with an index
counting the number of days since the cleanup occurred. Clearly state
the initial value. Find an explicit formula for the sequence and de-
termine the limit. On what day will the total amount of pollutant in
the pond be reduced to half of the pollution level prior to cleanup? Is
there a steady state amount of pollutant in the pond?
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