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9.3 The Chain Rule

The derivative rules we have learned this far focus on the arithmetic operations
that combine expressions into more complex operations—addition, subtraction,
multiplication, and division. Another operation that combines expressions is
composition. A function f represents a map from an independent variable to a
dependent variable, say f : x 7→ y. Composition occurs when the output from
another function becomes the input. The chain rule provides the differentiation
rule for composition.

In this section, we develop the chain rule. We begin by reviewing the idea of
a chain of variables and the relation this has to function composition. The chain
rule is based on the derivative being the limiting rate of change. By considering
how an increment of change in the independent variable propogates through
the chain, we will see that the rates of change at each step in the chain are
multiplied together. After a few examples of using the chain rule for formulas,
we then explore a few examples of the chain rule for related rates.

9.3.1 Review: Rate of Change and Composition

We start by reminding ourselves that a rate of change is a ratio of changes for
two variables. If y is a function of x, say x 7→ y = f(x), then the rate of change
dy
dx

∣

∣

∣

a
= f ′(a) is the rate of change of y with respect to x at the value x = a.

This measures the instantaneous ratio of changes in y from f(a) to changes in
x from a. At any value x close to a, this means that

y − f(a) ≈
dy

dx

∣

∣

∣

∣

a

· (x − a).

Changes in the value of y are approximately proportional to changes in x from
a and the derivative f ′(a) is the proportionality constant.

Second, we remind ourselves that compositions correspond to chains of
dependent variables. Suppose that u is a function of x, say u = g(x), and y is
subsequently a function of u, say y = f(u). We would write this chain as

{

u = g(x)

y = f(u)
.

Using substitution, we could also just write that y is a function of x using
composition.

y = f(g(x)) = f ◦ g(x).

Now, let us consider a particular value for x and ask how would we deter-
mine the rate of change of y with respect to x when it is defined with such a
composition? A change in x from a, ∆x = x − a, would lead to a change in u

from g(a) using the rate of change

∆u = u − g(a) ≈
du

dx

∣

∣

∣

∣

a

· (x − a) = g′(a) · ∆x.

In a similar way, a change in u from its starting value g(a) would lead to a
change in y from f(g(a)) using the rate of change

∆y = y − f(g(a)) ≈
dy

du

∣

∣

∣

∣

g(a)

· (u − g(a)) = f ′(g(a)) · ∆u.
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Putting these two results of the chain together, we find that

∆y ≈
dy

du

∣

∣

∣

∣

g(a)

·
du

dx

∣

∣

∣

∣

a

· ∆x = f ′(g(a)) · g′(a) · ∆x.

Graphically, this is illustrated in the figure below. The inputs and outputs
of the functions for g and f are illustrated as maps between number lines. The
input x = a to the function g : x 7→ u is mapped to the output u = g(a). A
nearby input x is mapped to an output g(x) that is not too far from g(a). The
differences are the values ∆x = x − a and ∆u = g(x) − g(a). In composition,
the outputs g(a) and g(x) act as inputs to f .

x
a x

∆x

g g

u

g(a)

∆u

g(x)

f f

y

f(g(a)) f(g(x))

∆y

∆u ≈ g′(a) · ∆x

∆y ≈ f ′(g(a)) · ∆u

The derivative provides an approximate ratio in the changes of output
values to the changes of input values. The smaller the input, the closer the
approximation. This is why the derivative must be defined as a limit of the
average rate of change. When functions are in composition, each function
effectively amplifies the difference in output by the factor of the derivative. So
the overall change in the output is a result of the product of the derivatives.

9.3.2 The Chain Rule for Derivatives

The chain rule formalizes the ideas in the previous paragraphs. It states that
the derivative of a composition f(g(x)) has a derivative given by

d

dx
[f(g(x))] = f ′(g(x)) · g′(x).

Pay close attention to the inputs of f ′ and g′. Compare those values to what
we had to do in the previous paragraphs. The inputs are different because the
functions f : u 7→ y and g : x 7→ u have different inputs in the composition.

Theorem 9.3.1 If we have an explicit chain representation,

{

u = g(x)

y = f(u)
,

then the chain rule can be rewritten:

dy

dx
=

d

dx
[f(g(x))]

= f ′(g(x)) · g′(x)

= f ′(u) ·
du

dx

=
dy

du

∣

∣

∣

∣

u=g(x)

·
du

dx

∣

∣

∣

∣

x

.
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The chain rule is often abbreviated as

dy

dx
=

dy

du
·

du

dx
.

Notice that this form almost looks like algebra would cancel the symbol du on
the right to give the formula dy

dx on the left.

Example 9.3.2 Find the derivative of f(x) = (2x+1)2 using the chain rule and
compare the result to what you get if you expand f(x) before differentiation.

Solution. To use the chain rule, we must identify the chain or composition
that is involved. The last operation in this formula is the act of squaring. What
do we square? This will be the way that we identify u = 2x+1. Then the final
output is y = u2. We can find the derivatives of each step in the chain:

{

u = 2x + 1

y = u2 ⇒

{

du
dx = 2

dy
du = 2u

.

Consequently, we have
dy

dx
=

dy

du

∣

∣

∣

∣

u=2x+1

·
du

dx
.

The notation u = 2x + 1 is simply a reminder that when writing the derivative
dy
du = 2u we will ultimately replace u = 2x + 1.

f ′(x) =
dy

dx
= (2u) · (2) = 2(2x + 1) · 2 = 4(2x + 1)

The other approach is to expand f(x) to a form that is easier to differentiate.

f(x) = (2x + 1)2 = (2x + 1)(2x + 1) = 4x2 + 4x + 1

This is a simple polynomial form that has a simple derivative:

f ′(x) = 8x + 4.

We can see that this is actually the same as our earlier derivative if we factor
out the common factor of 4. �

We could avoid the chain rule in the previous example because expanding
the square of our expression could be calculated fairly simply. When this is
not possible, the chain rule must be used.

Example 9.3.3 Find the derivative of f(x) = 3(x2 + 3x)7.

Solution. Our function has an intermediate formula u = x2 +3x that is then
raised to the 7th power and multiplied by 3. That is, if y = f(x) then y = 3u7.
We would write this as a chain, along with their derivatives:

{

u = x2 + 3x

y = 3u7 ⇒

{

du
dx = 2x + 3

dy
du = 21u6 .

The chain rule implies

f ′(x) =
dy

dx
=

dy

du

du

dx

= 21u6 · (2x + 3)

= 21(x2 + 3x)6(2x + 3).

Note that we had to substitute the formula for u to find our final result.
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In the language of function composition, we could instead do this by writing
f(x) as a composition f(x) = g(h(x)):

h : x 7→ u = x2 + 3x h(x) = x2 + 3x h′(x) = 2x + 3

g : u 7→ y = 3u7 g(u) = 3u7 g′(u) = 21u6

The chain rule would be written:

f ′(x) = g′(h(x)) · h′(x)

= g′(x2 + 3x) · (2x + 3)

= 21(x2 + 3x)6(2x + 3)

�

Negative and rational powers are much simpler with the chain rule. Using
negative powers in composition often helps us avoid needing the quotient rule.

Example 9.3.4 Find f ′′(x) where f(x) = 3
x2+1 .

Solution. The first derivative can be found using the quotient or reciprocal
rule.

f ′(x) = 3
d

dx

[ 1

x2 + 1

]

= 3 ·
−2x

(x2 + 1)2

=
−6x

(x2 + 1)2

We could also have done this using a chain rule. The relevant chain and
associated derivatives are given:

{

y = 3u−1

u = x2 + 1
⇒

{

dy
du = −3u−2

du
dx = 2x

Consequently, we know f ′(x) = dy
dx = dy

du
du
dx and

f ′(x) = −3(x2 + 1)−2 · (2x) = −6x(x2 + 1)−2.

To calculate the second derivative, we differentiate f ′(x). We could use
either the quotient rule or the product rule with negative powers. In the first
case, we find

f ′′(x) =
d

dx

[ −6x

(x2 + 1)2

]

=
(x2 + 1)2 d

dx [−6x] − (−6x) d
dx [(x2 + 1)2]

(x2 + 1)4

=
(x2 + 1)2(−6) + (6x) · 2(x2 + 1)(2x)

(x2 + 1)4
,

where we have used the chain rule on u2 with u = x2 + 1 to obtain

d

dx
[(x2 + 1)2] = 2(x2 + 1)(2x).

Notice that the numerator of f ′′(x) has x2 + 1 as a common factor, which
cancels with one of the corresponding factors in the denominator. A simplified
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version of f ′′(x) is therefore given by

f ′′(x) =
−6(x2 + 1) + (6x) · 2(2x)

(x2 + 1)3

=
−6x2 − 6 + 24x2

(x2 + 1)3

=
18x2 − 6

(x2 + 1)3
.

The other approach to finding the second derivative is to start with the
product representation of f ′(x) and differentiate using the product rule. In
order to differentiation (x2+1)−2, we use the chain rule on u−2 with u = x2+1:

d

dx

[

u−2
]

= −2u−3 ·
du

dx
= −2(x2 + 1)−3 · (2x).

This will give us

f ′′(x) =
d

dx

[

(−6x) · (x2 + 1)−2
]

=
d

dx

[

− 6x] · (x2 + 1)−2 + −6x
d

dx

[

(x2 + 1)−2
]

= −6 · (x2 + 1)−2 + −6x · −2(x2 + 1)−3(2x)

= −6 · (x2 + 1)−2 + 24x2(x2 + 1)−3

Remembering that negative exponents correspond to powers in the denomi-
nator, we can see this formula requires a common denominator (x2 + 1)3 to
simplify

f ′′(x) =
−6

(x2 + 1)2
+

24x2

(x2 + 1)3

=
−6(x2 + 1) + 24x2

(x2 + 1)3

=
18x2 − 6

(x2 + 1)3

We found the same answer both ways. Derivative rules are self-consistent. �

There may be times where the chain rule must be used more than once. Any
time the last operation on an expression is a function acting on an expression,
such as a power as opposed to arithmetic operations like sums or products
joining two expressions, we need to use the chain rule.

Example 9.3.5 If f(x) = (
√

3x + 2)4, compute f ′(x).

Solution. The last operation in f(x) is raising an expression to the power 4.
The derivative will require a chain rule. The first step is to differentiate this
last operation.

f ′(x) =
d

dx

[

(
√

3x + 2)4
]

=
u=

√
3x+2

d

du

[

u4]
d

dx

[√
3x + 2

]

=
u=

√
3x+2

4u3 ·
d

dx

[

(3x)1/2 + 2
]
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= 4(
√

3x + 2)3 ·
d

dx

[

(3x)1/2 + 2
]

We need to continue by finding the derivative of the inner expression u =√
3x + 2. This is a sum, and the second term in a sum is a constant. The

derivative of a constant is zero. We need to compute the derivative of (3x)1/2,
which is another composition. The expression 3x is raised to a power 1

2 . We
need the chain rule one more time.

d

dx

[

(3x)1/2 + 2
]

=
d

dx

[

(3x)1/2
]

+ 0

=
u=3x

d

du

[

u1/2
] d

dx

[

3x
]

=
u=3x

1

2
u−1/2 · 3

=
3

2
(3x)−1/2 =

3

2
√

3x

Substituting this into our original formula for f ′(x), we find

f ′(x) = 4(
√

3x + 2)3 ·
3

2
√

3x

=
6

√
3x

(
√

3x + 2)3.

�

9.3.3 Related Rates and the Chain Rule

Derivative rules are fundamentally about relationships between instantaneous
rates. The chain rule is no exception. The biggest difference in the rates that
are related by the chain rule and other related rates problems is that the chain
rule involves different independent variables for different steps in the chain.

Example 9.3.6 Consider a temperature dependent chemical reaction. At 20
degrees Celsius, the reaction generates a product at a rate of 30 grams per
minute. For small changes in temperature, the reaction can generate an addi-
tion 5 grams per minute per degree increase in temperature. If the temperature
is cooling at a rate of 0.05 degrees per minute, what is happening to the reac-
tion?

Conceptually, we recognize some variables in this problem: the tempera-
ture T (in degrees Celsius), the time t (in minutes), and the reaction rate R

(in grams per minute). Because temperature is changing in time, we know
there is a map t 7→ T . Similarly, we know that the reaction rate depends on
temperature, there is another map T 7→ R. In combination, we have a chain
t 7→ T 7→ R.

We identify the values at the instant t in question. We know T = 20 and
dT
dt = −0.05. (Why?) Similarly, we know R = 30 and dR

dT = 5. The chain rule
tells us the rate of change of the final variable in the chain with respect to the
original independent variable in the chain:

dR

dt
=

dR

dT
·

dT

dt
= 5 · −0.05 = −0.25.

That is, the reaction rate is decreasing at a rate of 0.25 grams per minute per
minute. (R has units of grams per minute so dR

dt has units of grams per minute
per minute.) �
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Example 9.3.7 As an ice cube melts, it maintains the shape of a cube. At
one particular instant, each side of the cube is 30 mm and the volume of the

cube is melting at a rate of 500 mm3

s . What is the rate of change of the length
of the sides at that instant?

Solution. Start by identifying the variables in the problem. The state of the
ice cube is characterized by the time, the length of the sides, and the total
volume. Let t be the time (in seconds), s the length of a side (in millimeters),
and V the volume (in cubic millimeters).

Next identify the functions defining relations between the variables. We
know that the length and volume are both functions of time, so we know there
are maps t 7→ s and t 7→ V . This is not a chain because t is the independent
variable for both maps. We also know that the volume is a function of the
length of a side, s 7→ V = s3. From this, we can identify a chain, t 7→ s 7→ V .

We finish by creating an equation relating our rates. Because our variables
are related by a chain, the chain rule establishes this relationship:

dV

dt
=

dV

ds

ds

dt
.

The problem gives us dV
dt = −500 mm3

s . The equation V = s3 is an explicit
formula from which we can compute a derivative

dV

ds
= 3s2.

At the instant in question, s = 30 mm so that dV
ds = 3(30)2 = 2700 mm3

mm . The
related rates equation involved three rates, two of which we now know. Solving
for ds

dt , we find

ds

dt
=

dV
dt
dV
ds

=
−500

2700
= −

5

27
.

That is, the lengths of the sides are decreasing at a rate of − 5
27

mm
s . �

In some examples, there are multiple equations relating the variables. In
that case, there will also be multiple equations relating their rates.

Example 9.3.8 Many water coolers have cups in the shape of a circular cone.
The volume V of a cone can be calculated in terms of the radius r of the
circular base and the height of the cone h by

V =
1

3
πr2h.

As water fills the cup, the volume of water creates a smaller cone than the cup
but one with similar dimensions.

Suppose a cup has a height of 12 cm and a radius at the top of 5 cm. Water

is filling the cup at a rate of 80 cm3

s . When the cup is filled to a depth of 6 cm,
how fast is the depth changing?
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Figure 9.3.9 Illustration of partially filled cup of water in the shape of a cone.

Solution. We will work through two different approaches to solving this prob-
lem. The first method will be to consider two equations that relate our variables
and create two equations for the related rates. The second method will use
the two equations relating the variables to create a single function to create a
related rates equation.

There are three basic dependent variables: the height of water in the cup,
the radius of the circle at the top of the water level, and the volume of water in
the cup. All of these change with respect to the independent variable of time.
Let t measure time in seconds, let h measure the height of water, let r measure
the radius at the top of the water level, and let V measure the volume of water
in the cup. Interpreting the given information, we should note the values of
variables at the instant in question. The units of how fast water is filling is a
volume per unit time, which we interpret as saying dV

dt = 80. The depth of the

water informs us that h = 6. The question asks us to determine dh
dt .

The volume of water is related to the radius and height by the equation

V =
1

3
πr2h.

In addition, we know that the radius and height must be similar dimensions
to the radius and height of the cup itself. This means that the ratios of corre-
sponding sides must be equal, giving a second equation

r

5
=

h

12
.

If we solve for r, we find r = 5
12 h.

From the equations relating the dependent variables, we can differentiate
to develop equations relating their rates of change. The volume is defined as a
constant multiple of 1

3 π with the product r2h, and the derivative of r2 requires
the chain rule:

dV

dt
=

1

3
π

d

dt

[

r2h
]

=
1

3
π

( d

dt

[

r2
]

· h + r2 ·
dh

dt

)

=
1

3
π(2r

dr

dt
) · h +

1

3
πr2 ·

dh

dt

=
2

3
πrh

dr

dt
+

1

3
πr2 dh

dt
.
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We can also differentiate the equation defining r to relate the rates for r and
h:

dr

dt
=

d

dt

[ 5

12
h

]

=
5

12

dh

dt
.

With these equations and the data, we can solve for dh
dt . Our related rates

equation involves the variable r, for which we do not have a value. We can use
the similar dimensions equation to solve for r,

r =
5

12
h =

5

12
(6) =

5

2
.

Substituting the values of variables and rates into the related rates equation
for dV

dt , we find

80 =
2

3
π(

5

2
)(6)

dr

dt
+

1

3
π(

5

2
)2 dh

dt
.

As this equation has both rates dr
dt and dh

dt , we substitute into the equation our

relation dr
dt = 5

12
dh
dt :

80 =
2

3
π(

5

2
)(6)(

5

12
)
dh

dt
+

1

3
π(

5

2
)2 dh

dt

80 =
25

6
π

dh

dt
+

25

12
π

dh

dt

80 =
75

12
π

dh

dt

80(12)

75π
=

dh

dt
dh

dt
=

64

5π
≈ 4.074.

Consequently, we conclude the height of water is rising at a rate just higher
than 4 cm

s .
The second method uses substitution earlier in the process. Instead of

substituting the rate of change from related rates, this approach seeks to write
an equation so that V is only a function of h. (We choose h because it is that
variable’s rate of change that is desired.) Because r = 5

12 h, we can create a
single equation relating V and h:

V =
1

3
πr2h

=
1

3
π(

5

12
h)2(h)

=
1

3
π(

25

144
)h3

=
25

432
πh3.

Once we have the equation relating volume and height of the water, we can
differentiate to find a single related rates equation using the constant multiple
rule and the chain rule for the power h3:

dV

dt
=

25

432
π

d

dt

[

h3
]

=
25

432
π3h2 dh

dt

=
25

144
πh2 dh

dt
.
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At this point, we can substitute our known values and solve for dh
dt :

dV

dt
=

25

144
πh2 dh

dt

80 =
25

144
π(6)2 dh

dt

80 =
25

4
π

dh

dt

80(4)

25π
=

dh

dt
dh

dt
=

64

5π
.

�

9.3.4 Summary

• A composition or chain occurs when the output of one function acts as
the input to another function.

• The derivative measures the limiting ratio of changes in the output to the
input for small changes in the input. Consequently, in a composition or
chain of functions, the overall rate of change is the product of the rates
of change for each step.

• The chain rule states that

d

dx

[

f
(

g(x)
)]

= f ′(g(x)) · g′(x).

Represented as a chain u = g(x) and y = f(u) so that y = f(g(x)), the
chain rule would be written

dy

dx
=

dy

du
·

du

dx
.

This is the derivative of the outer operation times the derivative of the
inner expression.

9.3.5 Exercises

Use the given rates to find the unknown rate.

1. Given dy
du = 4 and du

dx = −3, find dy
dx .

Hint: Imagine a chain x 7→ u 7→ y and apply the chain rule.

2. Given dF
dP = 1.2 and dP

dt = 40, find dF
dt .

Hint: t 7→ P 7→ F .

3. Given dR
dt = 50000 and dp

dt = −2, find dR
dp .

Hint: t 7→ p 7→ R.

4. Given dR
dt = 50000 and dp

dt = −2, find dR
dp .

Hint: t 7→ p 7→ R.

Compute the derivatives.

5.
d

dx
[(3x + 2)3]
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6.
d

dx
[(x2 + 1)5]

7.
d

dx
[(2x − 5)−2]

8.
d

dx
[
√

4x + 1]

9.
d

dx
[

3
√

x2 + 4
]

10.
d

dx
[(x3 + 2x)−2/3]

11.
d

dx
[x4(x2 + 1)3]

12.
d

dx
[x

√
2x + 1]

13.
d

dx
[(3x + 1)4(2x − 5)3]

14.
d

dx
[

3x

(2x + 1)2
]

15. For f(x) = x3(2x + 1)5, find f ′′(x).

16. For g(x) = 3
x2+1 , find g′′(x).

17. For h(x) =
√

x3 − 1, find h′′(x).

Use the values of f(x) and g(x) and their derivatives from the following table
to calculate the indicated values.

x 0 1 2 3 4 5

f(x) 5 3 1 0 2 4

g(x) 1 4 5 3 2 0

f ′(x) -3 -2 -1 0 3 5

g′(x) 4 2 -1 -2 -4 -3

18. For h(x) = f(g(x)), find h(2) and h′(2).

19. For h(x) = g(f(x)), find h(2) and h′(2).

20. For h(x) = g(2x − 3), find h(3) and h′(3).

21. For h(x) = f(x2), find h(2) and h′(2).

22. For h(x) = f2(x) = (f(x))2, find h(1) and h′(1).

23. For h(x) = f(2g(x)), find h(0) and h′(0).

Related Rates

24. A ripple in a pond spreads as a circle whose radius grows at a speed
of 30 cm

s . At what rate is the area enclosed by the ripple increasing?

25. An oil spill in the ocean is spreading as a circle such that the total
area is increasing at a constant rate. After 10 hours, the circle has
a radius of 0.1 km. What is the instantaneous rate of change of the
radius at this time?

26. A bacteria colony grows on its substrate in the shape of a circle. Your
colleague suggests that the colony only grows along the outer edge
such that the rate of change of the area should be proportional to the
circumference. Show that this predicts a constant rate of change for
the radius.
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27. A spherical balloon is being filled with air at a rate of 0.5 cubic meters
per minute. How fast is the radius increasing when the balloon has a
radius of 20 cm?

28. A spherical balloon is being filled with air at a rate of 0.5 cubic meters
per minute. At what radius will the balloon have its radius growing
at a rate of 1 centimeter per second?

29. A pile of sand takes the form of a circular cone. As the sand falls, the
pile always maintains the same slope so that the height and diameter
have the same proportions. When the pile is 2 meters high, the diam-
eter is 4 meters. If the sand pile at that instant is getting taller at a
rate of 0.2 meters per minute, at what rate (cubic meters per minute)
is sand being added to the pile?


