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9.4 The Derivative of Exponential Functions

We learned that the elementary exponential functions are of the form

expb(x) = bx

for positive real numbers b. Because exponential functions involve powers, a
common mistake students make is to use the power rule of derivatives. That
rule only applies to power functions, where the independent variable is the
base and the exponent is a constant. We will need a new rule for exponential
functions.

In this section, we explore the derivative rule associate with exponential
functions. As this is a new rule, we return to the definition of the derivative.
We will learn that the derivative of an exponential function is proportional to
the value of the function itself. The constant of proportionality is found using
the base of the exponential.

9.4.1 Elementary Exponential Functions

The definition of the derivative allows us to develop a new differentiation rule.
The key property necessary for the exponential function is a consequence of
the properties of exponents,

expb(x + y) = bx+y = bx · by = expb(x) · expb(y).

Using these properties

exp′
b(x) = lim

h→0

expb(x + h) − expb(x)

h

= lim
h→0

bx+h − bx

h

= lim
h→0

bxbh − bx

h

= lim
h→0

expb(x) ·
bh − 1

h

= expb(x) · lim
h→0

bh − 1

h
.

This means that the derivative of bx is just bx times some number L(b) that
depends on b,

d

dx
[bx] = bx · L(b),

where L(b) is calculated as the limit

L(b) = lim
h→0

bh − 1

h
.

Unfortunately, this is not a limit that we know as of yet. The following table
illustrates some approximations for the value of this limit for a variety of bases.

h
2h − 1

h

3h − 1

h

5h − 1

h

10h − 1

h
h = 0.1 0.71773 1.16123 1.74619 2.58925

h = 0.01 0.69555 1.10467 1.62246 2.32930

h = 0.001 0.69339 1.09922 1.61073 2.30524

h = 0.0001 0.69317 1.09867 1.60957 2.30285

h → 0 0.69315 1.09861 1.60944 2.30259



448 CHAPTER 9. RULES OF DIFFERENTIATION

Every positive real number b has such a limit, L(b). This limit corresponds
to the slope of the elementary exponential function y = bx at the point x = 0,

L(b) = exp′
b(0) = lim

h→0

b0+h − b0

h
= lim

h→0

bh − 1

h
.

For the four bases used above, this corresponds to the following derivatives:

d

dx
[2x] = L(2) · 2x ≈ 0.69315 · 2x

d

dx
[3x] = L(3) · 3x ≈ 1.09861 · 3x

d

dx
[5x] = L(5) · 5x ≈ 1.60944 · 5x

d

dx
[10x] = L(10) · 10x ≈ 2.30259 · 10x

We can see from the table that L(2) ≈ 0.69315 and L(3) ≈ 1.09861. This
suggests that there is a particular base b between 2 and 3 such that L(b) = 1.
Such a value does exist, using b ≈ 2.71828183. This value has the property
that the elementary exponential function and its derivative are exactly equal.
The base is called the natural base and is given the special symbol e. Con-
sequently,

d

dx
[ex] = ex.

Definition 9.4.1 The number e is that positive value such that

lim
h→0

eh − 1

h
= 1.

♦

Theorem 9.4.2
d

dx
[ex] = ex

Every exponential function is proportional to its derivative. This means
that at every point on the graph y = bx, the ratio of the slope to the y-value
is always the same constant. The interactive graph in Figure 9.4.3 illustrates
this principle. The proportionality constant, L(b), has been defined by a limit.
We will soon discover another way to find L(b) for these other bases.

Specify static image with @preview attribute,

Or create and provide automatic screenshot as
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via the mbx script

Figure 9.4.3 A graph of y = bx that illustrates the proportionality relation
between the slope and the y-value.

9.4.2 The Chain Rule with Exponentials

Because the exponential function exp(x) = ex is defined with the natural base,
exp′(x) = ex is the same as the original function, exp′ = exp. Combining
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this with the chain rule, we get a generalized derivative of compositions with
exponentials,

d

dx
[eu(x)] = eu(x) · u′(x) = eu ·

du

dx
.

Example 9.4.4 Find the derivatives of the following functions.

1. f(x) = e5x

2. g(x) = ex3

3. h(x) = ex2−4x

Solution. In each case, we will identify the formula u(x) and then apply the
chain rule.

1. For f(x) = e5x, we have u(x) = 5x so that f(x) = eu. We will use
u′(x) = 5. The chain rule gives:

f ′(x) =
d

dx
[e5x]

=
(u=5x)

d

dx
[eu] =

(u=5x)
eu du

dx

= e5x · 5 = 5e5x

So f ′(x) = 5e5x.

2. The function g(x) = ex3

involves a composition with u(x) = x3 such that
u′(x) = 3x2.

g′(x) =
d

dx
[ex3

]

=
(u=x3)

d

dx
[eu] =

(u=x3)
eu du

dx

= ex3

· (3x2) = 3x2ex3

Thus g′(x) = 3x2ex3

.

3. The function h(x) = ex2−4x involves a composition with u(x) = x2 − 4x

such that u′(x) = 2x − 4.

h′(x) =
d

dx
[ex2−4x]

=
(u=x2−4x)

d

dx
[eu] =

(u=x2−4x)
eu du

dx

= ex2−4x · (2x − 4) = (2x − 4)ex2−4x

Thus h′(x) = (2x − 4)ex2−4x.

�

9.4.3 Other Exponential Bases

Every function involving a positive base raised to an exponent can be rewritten
using the natural exponential function exp(x) = ex. Recall that the exponen-
tial and the logarithm are inverse functions so that for every number u > 0 we
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have
exp(ln(u)) = eln(u) = u.

This identity and the rules for logarithms show that any power uw with u > 0
can be rewritten as

uw = exp(ln(uw)) = eln(uw) = ew·ln(u).

Example 9.4.5 Rewrite each of the following in terms of the natural expo-
nential function.

1. f(x) = 2x

2. g(x) = 5x

3. p(x) = x3/4

4. r(x) = xx

Solution.

1. f(x) = 2x = exp(ln(2x)) = eln(2x) = ex ln(2)

2. g(x) = 5x = exp(ln(5x)) = eln(5x) = ex ln(5)

3. p(x) = x3/4 = exp(ln(x3/4)) = eln(x3/4) = e
3
4

ln(x)

4. r(x) = xx = exp(ln(xx)) = eln(xx) = ex ln(x)

�

Because every exponential can be rewritten in terms of the natural expo-
nential, we have a special result for all other exponential functions,

bx = ex·ln(b).

Using the chain rule with u = x · ln(b) and du
dx = ln(b), we discover

d

dx
[bx] =

d

dx
[ex ln(b)] = ex ln(b) · ln(b) = bx · ln(b).

Because we already had a formula d
dx [bx] = L(b) · bx, we now have an exact

expression for the limit L(b):

L(b) = lim
h→0

bh − 1

h
= ln(b).

Theorem 9.4.6
d

dx
[bx] = bx · ln(b)

9.4.4 Power Function or Exponential Function

One of the challenges for a calculus novice is identifying which rule applies.
It is essential that you can distinguish between an exponential function and a
power function.

Recall that a power function has a constant power while an exponential
function has a constant as the base. Furthermore, don’t be fooled by numbers
that look like other symbols. For example, xe is a power function since the
power is the constant value e (the natural exponential base):

d

dx
[xe] = exe−1.
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Similarly, x
√

2 is a power function because the power
√

2 is a number (even
though it is represented as a formula, it does not have any variables):

d

dx
[x

√
2] =

√
2x

√
2−1.

Furthermore, you must look at a formula and determine which operation
determines the differentiation rule that is required (constant multiple, sum,
product, quotient or chain). This is always based on the last operation to be
applied under the rules of order of operations. When the number of steps is
small, you should be able to write the derivative down directly. When the
number of steps is large, you might need to use the differentiation operator to
allow yourself the chance to work part of the way and indicate that there are
still steps remaining.

Example 9.4.7 Find the derivative
d

dx
[(x2 + 4)5e5x3

].

Solution. Start by identifying the final operation. In this problem, the func-
tion f(x) = (x2 + 4)5e5x3

is a product of (x2 + 4)5 and e5x3

. So we begin by
using the product rule. If you want to emphasize this without having to write
down the derivatives of the factors, then we use the differentiation operator:

f ′(x) =
d

dx
[(x2 + 4)5] · e5x3

+ (x2 + 4)5 ·
d

dx
[e5x3

].

Notice that the differentiation operator is pointing out where we still need to
find derivatives in order to complete the problem.

The first term (x2 +4)5 should be recognized as a composition with a power
function u5 where u = x2 + 4. We will use the chain rule:

d

dx
[(x2 + 4)5] =

(u=x2+4)

d

du
[u5] ·

du

dx
= 5(x2 + 4)4 · (2x).

The second term e5x3

should be recognized as a composition with the expo-
nential function eu where u = 5x3. Again, the chain rule guides us:

d

dx
[e5x3

] =
(u=5x3)

d

du
[eu] ·

du

dx
= e5x3

· (15x2).

The previous paragraph represents work that you either think through men-
tally or write out as scratch work. Putting the pieces together gives us the
overall answer.

f ′(x) =
d

dx
[(x2 + 4)5e5x3

] =
d

dx
[(x2 + 4)5] · e5x3

+ (x2 + 4)5 ·
d

dx
[e5x3

]

= 5(x2 + 4)4(2x) · e5x3

+ (x2 + 4)5 · e5x3

· (15x2)

= 10x(x2 + 4)4e5x3

+ 15x2(x2 + 4)5e5x3

As we start to use our derivatives in applications, we will often need to
factor our formulas. To illustrate this principle, we identify all of the common
factors of the terms.

f ′(x) = 5x(x2 + 4)4e5x3

· (2 + 3x(x2 + 4))

= 5x(x2 + 4)4e5x3

(2 + 12x + 3x2)

�
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9.4.5 Another Limit Defining e

When we defined the number e, it was done so that d
dx

[

ex
]

= ex. The natural

base was then chosen so that

lim
x→0

ex − 1

x
= 1.

Suppose that we instead looked for a function f(x) so that f(0) = 1 and
f ′(x) = f(x). An equation for an unknown function involving derivatives is
called a differential equation. We already know that f(x) = ex is the solution
to this differential equation. However, we will use the differential equation to
gain some additional insights into the function.

We begin by considering how we might approximate our function using only
the differential equation. Consider the interval [0, x] and create a partition with
n subintervals,

xk =
kx

n
.

We will recursively calculate a sequence of values yk ≈ f(xk). From the defi-
nition of an accumulation function, we know

f(xk+1) = f(xk) +

∫ xk+1

xk

f ′(z) dz.

We further know f ′(z) = f(z) by our differential equation. So if ∆x = x
n

is sufficiently small, we can approximate f ′(z) on the interval [xk, xk+1] by a
constant value f ′(z) ≈ f ′(xk). This method for approximating the next value
of the function defined by a differential equation,

f(xk+1) ≈ f(xk) + f ′(xk)(xk+1 − xk) = f(xk) + f ′(xk)∆x,

is called the Euler method.
Our differential equation f ′(x) = f(x) allows us to find a value for f ′(xk) =

f(xk). For our differential equation, the Euler method approximation gives us

f(xk+1) ≈ f(xk) + f(xk)(xk+1 − xk) = f(xk) · (1 + ∆x).

The approximation is then characterized by the recursive sequence,

y0 = 1,

yk+1 = yk(1 + ∆x),

which we identify as a geometric sequence with explicit formula

yk = (1 + ∆x)k.

We also know that f(x) = ex is the solution. Since xn = x, the Euler
method approximation shows that f(xn) = ex will be approximated by yn =
(1 + ∆x)n. Because ∆x = x

n , we can write n = x
∆x to obtain

f(x) = ex ≈ (1 + ∆x)x/∆x =
(

(1 + ∆x)1/∆x
)x

.

It would appear that e can be approximated by

e ≈ (1 + ∆x)1/∆x

when ∆x is sufficiently small. We state this heuristic result as the following
unproved theorem.
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Theorem 9.4.8

e = lim
h→0

(1 + h)1/h = lim
n→∞

(1 + 1
n )n.

We don’t have a proof at this point because without first knowing the
function ex, we do not have a clear definition for nonrational powers to justify
the following limit steps:

f(x) = lim
∆x→0

[ (

(1 + ∆x)1/∆x
)x ]

=
(

lim
∆x→0

[

(1 + ∆x)1/∆x
] )x

= ex.

Mathematically, the best way to prove that these limits are valid is actually to
work with the inverse function, the natural logarithm.


