9.5 Summary

454

• Given any positive base b > 0, we know

$$\frac{d}{dx}[b^x] = b^x \cdot L(b)$$

where L(b) is defined by a limit

$$L(b) = \lim_{x \to 0} \frac{b^x - 1}{x}.$$

• The number e is the natural base such that L(e) = 1,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Consequently,

$$\frac{d}{dx}\Big[e^x\Big] = e^x.$$

• The general derivative rule for exponentials applies the chain rule,

$$\frac{d}{dx}\Big[e^u\Big] = e^u \cdot \frac{du}{dx}.$$

• Expressing other formulas involving powers in terms of e,

$$u^v = e^{v \cdot \ln(u)},$$

we can show

$$\frac{d}{dx} \left[b^x \right] = \frac{d}{dx} \left[e^{x \ln(b)} \right] = e^{x \ln(b)} \cdot \ln(b).$$

This also shows that

$$\lim_{x \to 0} \frac{b^x - 1}{x} = \ln(b).$$

- The function $f(x) = e^x$ is the solution to a differential equation f'(x) = f(x) with f(0) = 1.
- $\lim_{h \to 0} (1+h)^{1/h} = e$ and $\lim_{n \to \infty} (1+\frac{1}{n})^n = e$.

9.5.1 Exercises

Foundations

- 1. Use the definition to find $L(\frac{1}{2})$ using a table to approximate the limit. Compare the result to $\ln(\frac{1}{2})$.
- **2.** Use the definition to find L(4) using a table to approximate the limit. Compare the result to $2 \ln(2)$.
- 3. Find the tangent line of $y = 3^x$ at x = 0, using an exact expression.

Find the indicated derivatives.

4. $\frac{d}{dx} \left[e^{4x} \right]$

9.5. SUMMARY

455

$$5. \quad \frac{d}{dx} \left[3^{2x} \right]$$

$$6. \quad \frac{d}{dt} \Big[5e^{-3t} \Big]$$

7.
$$\frac{d}{dx} \left[\frac{3}{e^{\frac{1}{2}x}} \right]$$

8.
$$\frac{d}{ds} \left[\frac{1}{3e^{-5s}} \right]$$

$$9. \quad \frac{d}{dx} \Big[x \cdot 2^{-x} \Big]$$

$$10. \ \frac{d}{dx} \left[e^{x^2} \right]$$

11.
$$\frac{d}{dx} \left[e^{\sqrt{x}} \right]$$

12.
$$\frac{d}{dx} \left[e^{e^x} \right]$$

13.
$$\frac{d}{dx} \left[e^{(2x+1)^4} \right]$$

14.
$$\frac{d}{dx} \left[(e^{3x} - 1)^5 \right]$$

16.
$$\frac{d^2}{dx^2} \Big[4xe^{-2x} \Big]$$

17.
$$\frac{d^2}{dx^2} \left[x^2 e^{5x} \right]$$

18.
$$\frac{d^2}{dx^2} \left[e^{-x^2 + 3x} \right]$$

Differential Equations

- 19. Show that $y(t) = Ae^{kt}$, where A and k are constants, is a solution to the differential equation $\frac{dy}{dt} = ky$ for any value of A. That is, using the proposed formula for y(t), compute $\frac{dy}{dt}$ and $k \cdot y$ and show that they are equal.
- **20.** Find a solution for the differential equation $\frac{dy}{dt} = 2y$ with an initial value y(0) = 200. Use the proposed formula from Exercise 9.4.7.19 and solve for the value A which also satisfies the initial value.
- **21.** A population grows at a rate that is proportional to the current population size,

$$\frac{dP}{dt} = k \cdot P.$$

If the population P is currently 2000 individuals and is growing at an instantaneous rate of 40 individuals per day, find the value k and solve the differential equation. Use the proposed formula from Exercise 9.4.7.19. What will be the population size in one week?

22. A radioactive substance decays at a rate that is proportional to the current mass of the substance,

$$\frac{dM}{dt} = -k \cdot M.$$

If the mass M is currently 50 milligrams and is decaying at an instantaneous rate of 2 micrograms per second, find the value k and solve the differential equation. Use the proposed formula from Exercise 9.4.7.19. What will be the mass of the radioactive substance after one day?