9.5 Summary

- Given any positive base $b>0$, we know

$$
\frac{d}{d x}\left[b^{x}\right]=b^{x} \cdot L(b)
$$

where $L(b)$ is defined by a limit

$$
L(b)=\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}
$$

- The number e is the natural base such that $L(e)=1$,

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

Consequently,

$$
\frac{d}{d x}\left[e^{x}\right]=e^{x}
$$

- The general derivative rule for exponentials applies the chain rule,

$$
\frac{d}{d x}\left[e^{u}\right]=e^{u} \cdot \frac{d u}{d x}
$$

- Expressing other formulas involving powers in terms of e,

$$
u^{v}=e^{v \cdot \ln (u)}
$$

we can show

$$
\frac{d}{d x}\left[b^{x}\right]=\frac{d}{d x}\left[e^{x \ln (b)}\right]=e^{x \ln (b)} \cdot \ln (b)
$$

This also shows that

$$
\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}=\ln (b)
$$

- The function $f(x)=e^{x}$ is the solution to a differential equation $f^{\prime}(x)=$ $f(x)$ with $f(0)=1$.
- $\lim _{h \rightarrow 0}(1+h)^{1 / h}=e$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

9.5.1 Exercises

Foundations

1. Use the definition to find $L\left(\frac{1}{2}\right)$ using a table to approximate the limit. Compare the result to $\ln \left(\frac{1}{2}\right)$.
2. Use the definition to find $L(4)$ using a table to approximate the limit. Compare the result to $2 \ln (2)$.
3. Find the tangent line of $y=3^{x}$ at $x=0$, using an exact expression.

Find the indicated derivatives.
4. $\frac{d}{d x}\left[e^{4 x}\right]$
5. $\frac{d}{d x}\left[3^{2 x}\right]$
6. $\frac{d}{d t}\left[5 e^{-3 t}\right]$
7. $\frac{d}{d x}\left[\frac{3}{e^{\frac{1}{2} x}}\right]$
8. $\frac{d}{d s}\left[\frac{1}{3 e^{-5 s}}\right]$
9. $\frac{d}{d x}\left[x \cdot 2^{-x}\right]$
10. $\frac{d}{d x}\left[e^{x^{2}}\right]$
11. $\frac{d}{d x}\left[e^{\sqrt{x}}\right]$
12. $\frac{d}{d x}\left[e^{e^{x}}\right]$
13. $\frac{d}{d x}\left[e^{(2 x+1)^{4}}\right]$
14. $\frac{d}{d x}\left[\left(e^{3 x}-1\right)^{5}\right]$
15. $\frac{d}{d t}\left[\frac{2}{e^{-t}+1}\right]$
16. $\frac{d^{2}}{d x^{2}}\left[4 x e^{-2 x}\right]$
17. $\frac{d^{2}}{d x^{2}}\left[x^{2} e^{5 x}\right]$
18. $\frac{d^{2}}{d x^{2}}\left[e^{-x^{2}+3 x}\right]$

Differential Equations

19. Show that $y(t)=A e^{k t}$, where A and k are constants, is a solution to the differential equation $\frac{d y}{d t}=k y$ for any value of A. That is, using the proposed formula for $y(t)$, compute $\frac{d y}{d t}$ and $k \cdot y$ and show that they are equal.
20. Find a solution for the differential equation $\frac{d y}{d t}=2 y$ with an initial value $y(0)=200$. Use the proposed formula from Exercise 9.4.7.19 and solve for the value A which also satisfies the initial value.
21. A population grows at a rate that is proportional to the current population size,

$$
\frac{d P}{d t}=k \cdot P
$$

If the population P is currently 2000 individuals and is growing at an instantaneous rate of 40 individuals per day, find the value k and solve the differential equation. Use the proposed formula from Exercise 9.4.7.19. What will be the population size in one week?
22. A radioactive substance decays at a rate that is proportional to the current mass of the substance,

$$
\frac{d M}{d t}=-k \cdot M
$$

If the mass M is currently 50 milligrams and is decaying at an instantaneous rate of 2 micrograms per second, find the value k and solve the differential equation. Use the proposed formula from Exercise 9.4.7.19. What will be the mass of the radioactive substance after one day?

