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Abstract. Let ` ≥ 5 be prime, let m ≥ 1 be an integer, and let p(n) denote the partition
function. Folsom, Kent, and Ono recently proved that there exists a positive integer b`(m) of
size roughly m2 such that the module formed from the Z/`mZ-span of generating functions
for p

(
`bn+1

24

)
with odd b ≥ b`(m) has finite rank. The same result holds with “odd” b

replaced by “even” b. Furthermore, they proved an upper bound on the ranks of these
modules. This upper bound is independent of m; it is

⌊
`+12
24

⌋
.

In this paper, we prove, with a mild condition on `, that b`(m) ≤ 2m− 1. Our bound is
sharp in all computed cases with ` ≥ 29. To deduce it, we prove structure theorems for the
relevant Z/`mZ-modules of modular forms. This work sheds further light on a question of
Mazur posed to Folsom, Kent, and Ono.

1. Introduction and statement of results.

Let n be a positive integer. A partition of n is a non-increasing sequence of positive integers
whose sum is n. The ordinary partition function, p(n), counts the number of partitions of
n. By convention, we set p(0) := 1; for α 6∈ N ∪ {0}, we set p(α) := 0.

Some of the most fundamental and elegant arithmetic properties of p(n) are the Ramanujan
congruences and their prime power extensions proved by Atkin [5], Ramanujan [19], and
Watson [25]. Let ` ≥ 5 be prime, and let b ≥ 0 be an integer. With 1 ≤ δ`(b) ≤ `b − 1 and
24δ`(b) ≡ 1 (mod `b), the extensions are, for all n ≥ 0,

(1.1)
p(5bn+ δ5(b)) ≡ 0 (mod 5b),
p(7bn+ δ7(b)) ≡ 0 (mod 7bb/2c+1),
p(11bn+ δ11(b)) ≡ 0 (mod 11b).

These congruences have inspired a terrific amount of interest in the study of p(n), its gen-
erating function, and allied functions. Landmark works include, for example, the papers
of Andrews and Garvan [4] and of Atkin and Swinnerton-Dyer [8] on the rank and crank
partition statistics. They also include papers of Ahlgren and Ono [1], [2], [16] which prove,
for fixed M coprime to 6, that there are infinitely many non-nested arithmetic progressions
An+B such that p(An+B) ≡ 0 (mod M). For further examples, see [3], [17], and [18] and
the references therein.

1.1. Main theorems. We now focus on recent work of Folsom, Kent, and Ono [12] related
to (1.1). Both this work and the works proving (1.1) result from using the theory of modular
forms to study generating functions of type

(1.2) P`(b; z) :=
∞∑
n=0

p

(
`bn+ 1

24

)
qn/24.
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The principal result in [12] is the following.

Theorem 1.1 ([12], Theorem 1.2). Let ` ≥ 5 be prime, and let m ≥ 1. Then there is an
integer

b`(m) ≤ 2

(⌊
`− 1

12

⌋
+ 2

)
m− 3

such that the Z/`mZ-module

SpanZ/`mZ{P`(b; z) : b ≥ b`(m), b odd}

has finite rank

(1.3) r`(m) ≤
⌊
`− 1

12

⌋
−
⌊
`2 − 1

24`

⌋
=

⌊
`+ 12

24

⌋
:= R`.

Similarly, the “even” Z/`mZ-module SpanZ/`mZ{P`(b; z) : b ≥ b`(m), b even} has finite rank
bounded by R`.

Remarks.

(1) From (1.3), primes ` ∈ {5, 7, 11} have R` = 0, which explains (1.1). For primes
13 ≤ ` ≤ 31, (1.3) gives R` = 1. It follows for all integers b1, b2 with b1 ≡ b2 (mod 2)
and b2 > b1 ≥ b`(m), that there exists an integer A`(b1, b2,m) with

p

(
`b2n+ 1

24

)
≡ A`(b1, b2,m) · p

(
`b1n+ 1

24

)
(mod `m) for all n.

This is Theorem 1.1 of [12].
(2) The authors of [12] use Theorem 1.1 to settle a conjecture of Atkin from [6]. For

primes 5 ≤ ` ≤ 31, m ≥ 1, and b ≥ b`(m), they prove (see Theorem 1.3 of [12]) that
P`(b; 24z) is an eigenform modulo `m for all of the Hecke operators in half-integral
weight `m−1(`− 1)− 1/2 on the group Γ0(576).

(3) For all m ≥ 1, we have r`(m) ≤ r`(m+ 1) and b`(m) ≤ b`(m+ 1).

The bound on b`(m) in Theorem 1.1 is not sharp since, for example, (1.1) implies that one
may take b5(m) = b11(m) = m, while one may take b7(m) = 2m − 2. Our main result is a
sharpened bound on b`(m). In general, b`(m) depends on an explicitly calculable constant d`
related to the nullity of an operator D(`) (see (1.7) below) on cusp forms of weight `− 1 on
SL2(Z) with `-integral coefficients reduced modulo `. In Section 5, we define d`. Calculations
reveal, for all primes 5 ≤ ` ≤ 1300 (the primes we considered), that d` = 0.

Theorem 1.2. Let ` ≥ 5 be prime, and suppose that d` = 0. Then for all m ≥ 1, we have

b`(m) ≤ 2m− 1.

Remarks.

(1) The bound on b`(m) is sharp for all computed cases with ` ≥ 29.
(2) In Section 5, we modify the bound on b`(m) in the theorem for primes ` with d` > 0.

We exhibit an example of the type of congruence predicted by Theorems 1.1 and 1.2.
See Section 6.1 for further examples and Section 6.2 comments on how these examples were
computed.



THE PARTITION FUNCTION MODULO PRIME POWERS. 3

Example. Let ` = 53. Our calculations show that r53(m) = R53 = 2 for all m ≥ 1, that
b53(1) = 1, and that b53(2) = 3. The following congruences hold for all n ≥ 0:

p(53n+ 42) ≡ 22p(533n+ 117861) + 25p(535n+ 331071432) (mod 53),

p(533n+ 117861) ≡ 2672p(535n+ 331071432) + 2304p(537n+ 929979652371) (mod 532).

Next, we give a consequence of Theorems 1.1 and 1.2.

Corollary 1.3. Let ` ≥ 5 be prime, let m ≥ 1, and let b`(m) be as in Theorem 1.2. Then
there exists an integer c` ≥ 1 such that for all b ≥ b`(m) and all n ≥ 0, we have

p

(
`bn+ 1

24

)
≡ p

(
`b+2c``

m−1
n+ 1

24

)
(mod `m).

We illustrate the corollary with an example.

Example. Let ` = 41. We find that c` = 10, and thus for all n ≥ 0, we have

p(41n+ 12) ≡ p(4121n+ 215 . . . 4912) (mod 41).

We refer to Section 6 for more examples of the corollary.

With r`(m) as in (1.3), the proof in Section 4 shows that c` is the order of a matrix in
GLr`(1)(Z/`Z). We note that the corollary is similar to the following result of Y. Yang
(Theorem 6.7 of [26]). Let m 6= ` be primes with m ≥ 13 and ` ≥ 5, and let i ≥ 1. Then for
all n, r ≥ 0, we have

p

(
mi`rn+ 1

24

)
≡ p

(
mi`M+rn+ 1

24

)
(mod mi).

Yang’s proof uses the existence of a non-trivial Hecke-invariant subspace of half-integral
weight cusp forms, and it reveals that M is the order of a matrix in PGLbm

12c
(
Z/miZ

)
.

1.2. Reformulation of main results. The work of Folsom, Kent, and Ono introduces
a new framework for studying the generating functions P`(b; z) modulo powers of `. The
central objects in this framework are certain submodules Ω`(m) of the Z/`mZ-module of
cusp forms of weight `m−1(`− 1) on SL2(Z) with `-integral coefficients reduced modulo `m.
We define Ω`(m) in Theorem 1.4 and (1.14) below. Furthermore, the authors in [12] define
an operator D(`) (see (1.7)) which acts on these submodules and plays an important role in
their study. The submodules Ω`(m) are objects of interest independent of their connection to
partitions. Our work in this paper uncovers some of their fine structure properties, thereby
addressing a question of Mazur from the appendix to [12], which we restate here.

Question (Mazur). Do the spaces Ω`(m) “compile well” to produce a clean free Z`-module?
Do the Hecke operators work well on these spaces?

We therefore reframe Theorems 1.1 and 1.2 in the abstract context of the submodules
Ω`(m). Let N ≥ 1 and k be integers. We denote the space of weakly holomorphic modular
forms of weight k on Γ0(N) by M !

k(Γ0(N)). A form f(z) ∈ M !
k(Γ0(N)) has poles, if any,

supported at cusps, and it has a Fourier expansion

f(z) =
∞∑

n=n0

a(n)qn (q := e2πiz)
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with n0 � −∞. We denote by Mk(Γ0(N)) and Sk(Γ0(N)) the subspaces of holomorphic
modular forms and cusp forms, respectively. When N = 1, we omit reference to the group.
For details on modular forms, see Section 2.

Remark. An alternative and more general context for our work arises from viewing modular
forms geometrically in the sense of Katz [14]. In this setting, weakly holomorphic modular
forms correspond to rational sections of line bundles on modular curves with prescribed
divisors corresponding to poles at cusps. One may identify such forms as rules on elliptic
curves with level structure. Further, one can use the Tate curve to identify a modular form
with its q-expansion. In this way, the technical q-expansion manipulations we require in
Section 3, 4, and 5 may be viewed as “mod-ing” out classical moduli problems.

Some of the modular forms we require arise as quotients of

(1.4) η(z) := q1/24

∞∏
n=1

(1− qn),

the Dedekind eta-function. An important example is

(1.5) Φ`(z) :=
η(`2z)

η(z)
= q

`2−1
24 + · · · ∈M !

0(Γ0(`2)) ∩ Z[[q]].

We also define certain operators on spaces of modular forms. For primes ` ≥ 5, we define
Atkin’s U(`)-operator and Folsom-Kent-Ono’s D(`)-operator on f(z) ∈M !

k(Γ0(N)) by

f(z) | U(`) :=
∞∑

`n=n0

a(`n)qn,(1.6)

f(z) | D(`) := (Φ`(z)f(z)) | U(`).(1.7)

It is useful to package the operators U(`) and D(`) together as X(`) and Y (`):

f(z) | X(`) := f(z) | U(`) | D(`),(1.8)

f(z) | Y (`) := f(z) | D(`) | U(`).(1.9)

We continue to follow [12] by defining, for all integers b ≥ 0, a sequence of functions
{L`(b; z)}. We set L`(0; z) := 1, and for all b ≥ 1, we set

(1.10) L`(b; z) :=

{
L`(b− 1; z) | D(`) if b is odd,

L`(b− 1; z) | U(`) if b is even.

Euler’s infinite product generating function for the partition function,

∞∑
m=0

p(m)qm =
∞∏
n=1

1

(1− qn)
,

is a natural starting point for connecting partitions and modular forms. Using it together
with (1.2) and (1.4) - (1.10), one can show as in Lemma 2.1 of [12] that

L`(b; z) =

{
η(`z)P`(b; z) if b is odd,

η(z)P`(b; z) if b is even.
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We now fix integers b ≥ 0 and m ≥ 1. We study the Z/`mZ-modules

(1.11) SpanZ/`mZ{L`(β; z) mod `m : β ≥ b, β ≡ b (mod 2)} =:

{
Λodd
` (b,m) if b is odd,

Λeven
` (b,m) if b is even.

It follows from (1.8), (1.9), and (1.10) that

Λodd
` (b,m) = SpanZ/`mZ{L`(b; z) | X(`)s : s ≥ 0};

Λeven
` (b,m) = SpanZ/`mZ{L`(b; z) | Y (`)t : t ≥ 0}.

Moreover, we have the following commutative diagram of Z/`mZ-module homomorphisms:

(1.12)

Λodd
` (b,m) Λeven

` (b+ 1,m)
U(`)

Λodd
` (b+ 2,m)

D(`)

Λeven
` (b+ 3,m)

U(`)

X(`) Y (`)

In the foregoing context, we recast Theorems 1.1 and 1.2 in a unified form.

Theorem 1.4. Let ` ≥ 5 be prime, let m ≥ 1, and suppose that d` = 0. Then there is an
integer

b`(m) ≤ 2m− 1

such that the nested sequence of Z/`mZ-modules

Λodd
` (1,m) ⊇ Λodd

` (3,m) ⊇ · · · ⊇ Λodd
` (2b+ 1,m) ⊇ · · ·

is constant for all b with 2b + 1 ≥ b`(m). Moreover, if one denotes the stabilized Z/`mZ-
module by Ωodd

` (m), then we have

(1.13) r`(m) := rankZ/`mZ(Ωodd
` (m)) ≤

⌊
`− 1

12

⌋
−
⌊
`2 − 1

24`

⌋
=

⌊
`+ 12

24

⌋
:= R`.

Similarly, the sequence of “even” Z/`mZ-modules {Λeven
` (b,m) : b ≥ b`(m)} is stable. If we

denote the stable module by Ωeven
` (m), then an upper bound on its rank is R`.

Remark 1. In view of commutative diagram (1.12), we see that b`(m) is the smallest positive
integer b for which X(`) : Λodd

` (b,m) → Λodd
` (b + 2,m) is an isomorphism. Moreover, the

theorem implies that the following maps are isomorphisms:

U(`) : Ωodd
` (m)→ Ωeven

` (m), D(`) : Ωeven
` (m)→ Ωodd

` (m),

X(`) : Ωodd
` (m)→ Ωodd

` (m), Y (`) : Ωeven
` (m)→ Ωeven

` (m).

Remark 2. Theorem 7.1 of the appendix to [12] describes work of Calegari [10] on how the
stability and finiteness results in Theorem 1.4 can be generalized using aspects of the theory
of half-integral weight overconvergent p-adic modular forms developed by Ramsey [20], [21].
However, bounds on the stability threshold, b`(m), and on the rank, r`(m), require explicit
analysis specific to the inputs (1.5) - (1.10). In what follows, we provide such an analysis.
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Remark 3. Recent work of Belmont, Lee, Musat, and Trebat-Leder [9] adapts Theorems 1.1,
1.2, and 1.4, to Andrews’ smallest parts partition function, spt(n), and to the rth power
partition function, pr(n).

The paper is organized as follows. In Section 2, we state facts we need on modular forms.
In Section 3, we prove Lemma 3.1 and Lemma 3.6. These lemmas underpin the facts we prove
in Sections 4 and 5 on the algebraic structure of the Z/`mZ-modules Λodd

` (b,m), Λeven
` (b,m),

and

(1.14) Ω`(m) := Ωodd
` (m) + Ωeven

` (m).

Stability and finiteness of rank in Theorem 1.4 follow directly from Lemma 3.1 via Corollary
3.5. In Section 4, we use this corollary to exhibit explicit injections from Ωodd

` (m) and
Ωeven
` (m) into S`−1, thereby proving the upper bound (1.13) and reproving Theorem 1.1. We

also prove Corollary 1.3 in Section 4. Theorem 1.2 follows from Lemma 3.6 and the structure
developed in Section 4, as we show in Section 5. In Section 6, we give more examples of
Theorem 1.2 and Corollary 1.3. We also thoroughly explain how we computed examples for
all primes 13 ≤ ` ≤ 1297.

Acknowledgments. To be entered later.

2. Preliminary facts on modular forms.

The proofs of our results require certain facts from the theory of modular forms. For
details, see for example, [11] or [13].

2.1. Modular forms. We first discuss operators on spaces of modular forms. One may

consult [7] and [23] in addition to the references above. Let γ =

(
a b
c d

)
∈ GL+

2 (Q), and let

N ≥ 1 and k be integers. We define the slash operator on f(z) ∈ M !
k(Γ0(N)) by

(2.1) (f |k γ)(z) := (det γ)k/2(cz + d)−kf(γz).

Let ` ≥ 5 be prime. We define the operator V (`) on f(z) ∈M !
k(Γ0(N)) by

f(z) | V (`) :=
∞∑

n=`n0

a(n)q`n.

With U(`) as in (1.6), one finds that

(2.2) f(z) | U(`) = `k/2−1

`−1∑
j=0

f |k
(

1 j
0 `

)
and that

(2.3) f(z) | V (`) = `−k/2f |k
(
` 0
0 1

)
= f(`z).

Next, for primes ` - N , we define the Hecke operator T (`, k) on f(z) ∈M !
k(Γ0(N)) by

(2.4) f(z) | T (`, k) = f(z) | U(`) + `k−1f(z) | V (`).

If f(z) ∈M !
k(Γ0(`)), then we define the trace of f by

(2.5) Tr(f) := f + `1− k
2 (f |k W (`)) | U(`),
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where W (`) :=

(
0 −1
` 0

)
. We record basic properties of the operators under consideration.

See for example, [7] and [23]. We refer to (1.8) and (1.9) for definitions of the operators X(`)
and Y (`).

Lemma 2.1. Let ` ≥ 5 be prime, and let k ∈ Z.

(1) Let j ≥ 0, and suppose that f(z) ∈M !
k(Γ0(`j)). Then we have

f(z) | U(`), f(z) | D(`) ∈

{
M !

k(Γ0(`)), j ∈ {0, 1},
M !

k(Γ0(`j−1)), j ≥ 2;

f(z) | X(`), f(z) | Y (`) ∈

{
M !

k(Γ0(`)), j ∈ {0, 1, 2},
M !

k(Γ0(`j−2)), j ≥ 3;

f(z) | V (`) ∈M !
k(Γ0(`j+1)).

(2) Let N ≥ 1, let f(z) ∈M !
k(Γ0(N)), and suppose that ` - N . Then we have

f(z) | T (`, k) ∈ M !
k(Γ0(N)).

(3) Suppose that f(z) ∈M !
k(Γ0(`)). Then we have f |k W (`) ∈M !

k(Γ0(`)) and Tr(f) ∈ M !
k.

(4) Suppose that f(z) ∈M !
k. Then we have f |k W (`) = `k/2f | V (`) ∈M !

k(Γ0(`)).

Next, we state the modular transformation law for the eta-function (1.4).

For γ =

(
a b
c d

)
∈ SL2(Z), there exists a 24-th root of unity εa,b,c,d for which

(2.6) η

(
az + b

cz + d

)
= εa,b,c,d(cz + d)1/2η(z).

We always take the branch of the square root having non-negative real part. Let ζ24 = e2πi/24.
Special cases of the transformation law include

(2.7) η(z + 1) = ζ24η(z), η

(
−1

z

)
=

√
z

i
· η(z).

Further modular forms which play a central role in our work are given as follows:
For k ≥ 4 and even, we have

Ek(z) := 1− 2k

Bk

∞∑
n=1

∑
d|n

dk−1qn ∈Mk,

where Bk is the kth Bernoulli number. The Ramanujan Delta-function is given by

∆(z) := η(z)24 ∈ S12.

We also define, for primes ` ≥ 5,

(2.8) A`(z) :=
η(z)`

η(`z)
= 1 + · · · ∈M `−1

2
(Γ1(`)) ∩ Z[[q]].

We note that A`(z)2 ∈M`−1(Γ0(`)) ∩ Z[[q]].
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2.2. Modular forms modulo prime powers. Let ` ≥ 5 be prime, and let Z(`) denote
the localization of Z at `. We first consider modular forms with coefficients in Z(`) reduced
modulo `. For details, see [22] and [24]. Let k ≥ 4 be even, and let f(z) ∈ Mk ∩ Z(`)[[q]].
The filtration of f(z) ∈Mk ∩ Z(`)[[q]] with f(z) 6≡ 0 (mod `) is defined by

w`(f) := inf{k′ : there exists g ∈Mk′ ∩ Z[[q]] with f ≡ g (mod `)}.
If f(z) ≡ 0 (mod `), then we set w`(f) := −∞. For f1(z) ∈ Mk1 and f2(z) ∈ Mk2 with
k1 ≡ k2 (mod `− 1) and `-integral coefficients, we have

(2.9) w`(f1 + f2) ≤ max{w`(f1), w`(f2)};
equality holds if w`(f1) 6= w`(f2). A lemma of Serre (Lemme 2 of [23]) describes how U(`)
affects filtration.

Lemma 2.2. Let ` ≥ 5 be prime, and let f(z) ∈Mk ∩ Z(`)[[q]].

(1) We have

w`(f | U(`)) ≤ `+
w`(f)− 1

`
.

(2) Suppose that w`(f) = `− 1. Then we have w`(f | U(`)) = `− 1.

We also observe that

(2.10) Φ`(z) ≡ ∆(z)
`2−1
24 (mod `).

We now turn to facts on modular forms with coefficients in Z(`) reduced modulo `j with
j ≥ 1. For details, see [23]. In view of (2.4) and Lemma 2.1 (2), we have the following.

Proposition 2.3. Let k ≥ 1, and let f(z) ∈M !
k ∩ Z(`)((q)).

(1) We have f(z) | T (`, k) ≡ f(z) | U(`) (mod `k−1).
(2) The operator U(`) stabilizes M !

k ∩ Z(`)((q)) modulo `k−1.

We next give a useful fact on congruences for power series modulo powers of ` which follows
by induction using Fermat’s Little Theorem.

Lemma 2.4. Suppose that f(z) ∈ Z(`)[[q]] has f(z) ≡ 1 (mod `). Then for all j ≥ 1, we

have f(z)`
j−1 ≡ 1 (mod `j).

When ` ≥ 5 is prime, properties of Bernoulli numbers imply that E`−1(z) ∈ Z(`)[[q]] and that
E`−1(z) ≡ 1 (mod `); Fermat’s Little Theorem implies that A`(z)2 ≡ 1 (mod `). Therefore,
we may apply Lemma 2.4 to these forms.

Proposition 2.5. For all j ≥ 1, we have

E`−1(z)`
j−1 ≡ 1 (mod `j), A`(z)2`j−1 ≡ 1 (mod `j).

To prove our results, we carefully keep track of the largest power of ` dividing all coefficients
of series in Z(`)((q)). For this purpose, we define v` on Q by

v`

(m
n

)
:= ord`(m)− ord`(n),

and we set v`(0) :=∞. Our definition extends to f(z) =
∑
a(n)qn ∈ Z(`)((q)) by

(2.11) v`(f) := inf{n : v`(a(n))}.



THE PARTITION FUNCTION MODULO PRIME POWERS. 9

With f(z), g(z) ∈ Z(`)((q)), we have

(2.12) v`(f + g) ≥ min {v`(f), v`(g)} ;

equality holds if v`(f) 6= v`(g).

3. Two lemmas.

The proofs of our results rest on two lemmas which we prove in this section. The first
lemma asserts, subject to certain hypotheses, that the operator D(`) (as in 1.7) stabilizes
the space M`k−1(`−1) ∩ Z[[q]] with coefficients reduced modulo `k.

Lemma 3.1. Let ` ≥ 5 be prime, let n ≥ 1, and let Ψ(z) ∈ Z(`)[[q]]. Suppose, for all
1 ≤ k ≤ n that there exists gk(z) ∈M`k−1(`−1) ∩Z[[q]] with Ψ(z) ≡ gk(z) (mod `k). Then for

all 1 ≤ k ≤ n, there exists hk(z) ∈ S`k−1(`−1) ∩ Z[[q]] with Ψ(z) | D(`) ≡ hk(z) (mod `k).

Proof. Suppose that k = 1 and ` ≥ 7. Using (1.7) and (2.10), we compute

Ψ(z) | D(`) ≡ g1(z) | D(`) ≡ (g1(z)Φ`(z)) | U(`) ≡
(
g1(z)∆(z)

`2−1
24

)
| U(`) (mod `).

Since ` ≥ 7, g1(z) ∈M`−1, and ∆(z)
`2−1
24 ∈ S `2−1

2

, an application of Lemma 2.2 gives

w`

((
g1(z)∆(z)

`2−1
24

)
| U(`)

)
≤ `+

`− 1 + `2−1
2
− 1

`
(3.1)

= (`− 1)

(
1 +

`+ 5

2`

)
< 2(`− 1).

It follows that there exists h1(z) ∈ S`−1 with Ψ(z) | D(`) ≡ h1(z) (mod `). If k = 1 and
` = 5, Proposition 2.5 implies that the form g1(z) ∈M4∩Z[[q]] ⊆ CE4(z) is congruent modulo
5 to a constant c ∈ Z. From (1.7) and (2.10), we compute g1(z) | D(5) ≡ c∆(z) | U(5) ≡ 0
(mod 5).

Now, we suppose that k ≥ 2. We have the following congruence of modular forms in
M`k−1(`−1) ∩ Z(`)[[q]] modulo `k:

Ψ(z) | D(`) ≡ gk(z) | D(`) ≡
(

gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−1

)
| D(`)

+

(
gk−1(z)E`−1(z)`

k−2(`−1) − gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−1

)
| D(`)(3.2)

+
(
gk(z)− gk−1(z)E`−1(z)`

k−2(`−1)
)
| D(`) (mod `k).

We closely examine each summand.
In view of Proposition 2.5, the first summand simplifies as(

gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−1

)
| D(`) ≡ gk−1(z)

A`(z)2`k−2 | D(`) (mod `k).

From (2.8) and Lemma 2.1, we observe that

(3.3)
gk−1(z)

A`(z)2`k−2 | D(`) ∈M !
0(Γ0(`)) ∩ Z[[q]].

We prove the following proposition.
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Proposition 3.2. The form (3.3) is congruent modulo `k to a form in S`k−1(`−1) ∩ Z[[q]].

Proof. The proof follows Serre’s argument for Théorème 10 in [23]. To begin, we define

(3.4) h(z) := E`−1(z)− ``−1E`−1(z) | V (`) ∈M`−1(Γ0(`)) ∩ Z(`)[[q]].

By Proposition 2.5, we see that h(z) ≡ 1 (mod `), and hence, from Lemma 2.4 that

h(z)`
k−1 ≡ 1 (mod `k). Therefore, we have

gk−1(z)

A`(z)2`k−2 | D(`) ≡
(

gk−1(z)

A`(z)2`k−2 | D(`)

)
h(z)`

k−1

(mod `k);

(3.3) and (3.4) imply that the form on the right side is in M !
`k−1(`−1)

(Γ0(`))∩Z(`)[[q]]. Using

Lemma 2.1 (3), we note that

Tr

((
gk−1(z)

A`(z)2`k−2 | D(`)

)
h(z)`

k−1

)
is on SL2(Z) with weight `k−1(`− 1). Hence, it suffices to show that

gk−1(z)

A`(z)2`k−2 | D(`) ≡ Tr

((
gk−1(z)

A`(z)2`k−2 | D(`)

)
h(z)`

k−1

)
(mod `k).

With v` as in (2.11), Lemme 9 of [23] implies that

v`

(
Tr

((
gk−1(z)

A`(z)2`k−2 | D(`)

)
h(z)`

k−1

)
− gk−1(z)

A`(z)2`k−2 | D(`)

)
≥

min

(
k + v`

(
gk−1(z)

A`(z)2`k−2 | D(`)

)
, `k−1 + 1 + v`

(
gk−1(z)

A`(z)2`k−2 | D(`) |0 W (`)

))
.

Since
gk−1(z)

A`(z)2`k−2 | D(`) has integer coefficients, we have v`

(
gk−1(z)

A`(z)2`k−2 | D(`)

)
≥ 0; as such,

we show that

(3.5) `k−1 + 1 + v`

(
gk−1(z)

A`(z)2`k−2 | D(`) |0 W (`)

)
≥ k.

We turn to the computation of
gk−1(z)

A`(z)2`k−2 | D(`) |0 W (`). Let 1 ≤ j ≤ ` − 1. We first

observe that there exists −(` − 1) ≤ j′ ≤ −1 with jj′ ≡ 1 (mod `). Let bj := jj′−1
`

. Then

we have jj′ − bj` = 1, so

(
j bj
` j′

)
∈ Γ0(`). Furthermore, we have

(3.6)

(
1 j
0 `

)(
0 −1
` 0

)
=

(
j` −1
`2 0

)
=

(
j bj
` j′

)(
` −j′
0 `

)
.

For 1 ≤ j ≤ `− 1, we use (2.1) and (3.6) to obtain

gk−1 |`k−2(`−1)

((
1 j
0 `

)(
0 −1
` 0

))
= gk−1 |`k−2(`−1)

((
j bj
` j′

)(
` −j′
0 `

))
= gk−1(z) |`k−2(`−1)

(
` −j′
0 `

)
= (`2)`

k−2(`−1)/2`−`
k−2(`−1)gk−1

(
z − j′

`

)
= gk−1

(
z − j′

`

)
.
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Using (1.5), (2.1), (2.6), (2.7), (2.8), and (3.6), we find that

A2`k−2

` |`k−2(`−1)

((
1 j
0 `

)(
0 −1
` 0

))
= A`

(
z − j′

`

)2`k−2

=

η
(
z − j′

`

)`
η(`z − j′)


2`k−2

=

ζj′24 ·
η
(
z − j′

`

)`
η(`z)


2`k−2

(3.7)

and that

Φ` |0
((

1 j
0 `

)(
0 −1
` 0

))
= Φ`

(
j`z − 1

`2z

)
=
η
(
`2
(
j`z−1
`2z

))
η
(
j`z−1
`2z

) =
η
(
−1
z

+ j`
)

η

((
1 j
0 `

)(
0 −1
` 0

)
z

)
=

ζj`24 · η
(
−1
z

)
η

((
j bj
` j′

)(
` −j′
0 `

)
z

) =
ζj`24

(
z
i

)1/2
η(z)

εj,bj ,`,j′

(
`

(
` −j′
0 `

)
z + j′

)1/2

η

((
` −j′
0 `

)
z

)

=
ζj`24

(
z
i

)1/2
η(z)

εj,bj ,`,j′(`z)1/2η
(
z − j′

`

) =
ζ`j24(−i)1/2

εj,bj ,`,j′
· η(z)

`1/2η
(
z − j′

`

) .
(3.8)

Next, we observe that

(3.9)

(
0 −1
` 0

)(
` 0
0 1

)
=

(
0 −1
`2 0

)
=

(
1 0
0 `

)(
0 −1
` 0

)
.

Using (2.1), (2.3), Lemma 2.1 (4), and (3.9), we obtain

gk−1 |`k−2(`−1)

((
1 0
0 `

)(
0 −1
` 0

))
= gk−1 |`k−2(`−1)

((
0 −1
` 0

)(
` 0
0 1

))
= gk−1 |`k−2(`−1) W (`) |`k−2(`−1)

(
` 0
0 1

)
= ``

k−2(`−1)/2gk−1 |`k−2(`−1) W (`) | V (`)

= ``
k−2(`−1)gk−1(z) | V (`2) = ``

k−2(`−1)gk−1(`2z);(3.10)

using (2.1), (2.7), (2.8), and (3.9), we obtain

A2`k−2

` |`k−2(`−1)

((
1 0
0 `

)(
0 −1
` 0

))
= A2`k−2

` |`k−2(`−1)

(
0 −1
`2 0

)

= `−`
k−2(`−1)z−`

k−2(`−1)A`

(
− 1

`2z

)2`k−2

= `−`
k−2(`−1)z−`

k−2(`−1)

(
η
(−1
`2z

)`
η
(−1
`z

) )2`k−2

= `−`
k−2(`−1)z−`

k−2(`−1)

(
``( z

i
)`/2η(`2z)`

`1/2( z
i
)1/2η(`z)

)2`k−2

= ``
k−1

i−`
k−2(`−1)

(
η(`2z)`

η(`z)

)2`k−2

.(3.11)
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We deduce from (1.5), (2.1), (2.7), and (3.9) that

Φ`(z) |0
((

1 0
0 `

)(
0 −1
` 0

))
= Φ`(z) |0

(
0 −1
`2 0

)
= Φ`

(
− 1

`2z

)
=

η
(
−1
z

)
η
(
− 1
`2z

)
=

(
z
i

)1/2
η(z)(

`2z
i

)1/2
η(`2z)

=
1

`Φ`(z)
.(3.12)

Inserting (3.6) - (3.12) into (2.2), we obtain:(
gk−1(z)

A`(z)2`k−2 · Φ`(z)

)
| U(`) |0 W (`) =

1

`

`−1∑
j=0

(
gk−1

A2`k−2

`

· Φ`

)
|0
((

1 j
0 `

)(
0 −1
` 0

))

=
1

`

(
gk−1

A2`k−2

`

· Φ`

)
|0
((

1 0
0 `

)(
0 −1
` 0

))
+

1

`

`−1∑
j=1

(
gk−1

A2`k−2

`

· Φ`

)
|0
((

1 j
0 `

)(
0 −1
` 0

))

=
1

`

(
gk−1 |`k−2(`−1)

(
0 −1
`2 0

))
·
(
A2`k−2

` |`k−2(`−1)

(
0 −1
`2 0

))−1

·
(

Φ` |0
(

0 −1
`2 0

))

+
1

`

`−1∑
j=1

gk−1

(
z − j′

`

)
·

(
ζj
′

24

η(`z)

η
(
z − j′

`

)`
)2`k−2

·

(
ζ`j24(−i)1/2

εj,bj ,`,j′

)
· η(z)

`1/2η
(
z − j′

`

)


=
1

`

(
``

k−2(`−1)gk−1(`2z) · `−`k−1

i`
k−2(`−1)

(
η(`z)

η(`2z)`

)2`k−2

· 1

`Φ`(z)

)

+
1

`

`−1∑
j=1

gk−1

(
z − j′

`

)
·

(
ζj
′

24

η(`z)

η
(
z − j′

`

)`
)2`k−2

·

(
ζ`j24(−i)1/2

εj,bj ,`,j′

)
· η(z)

`1/2η
(
z − j′

`

)


=
i`

k−2(`−1)

``k−2+2
· gk−1(`2z)η(`z)

η(`2z)`Φ`(z)
+

(−i)1/2η(`z)2`k−2
η(z)

`3/2
·
`−1∑
j=1

ζ2j′`k−2+`j
24

εj,bj ,`,j′

 gk−1

(
z − j′

`

)
η
(
z − j′

`

)2`k−1+1

 .

Thus, we conclude that

(3.13) v`

(
gk−1(z)

A`(z)2`k−2 | D(`) |0 W (`)

)
≥ −`k−2 − 2

from which it follows, for ` ≥ 5 and k ≥ 2, that

`k−1 + 1 + v`

(
gk−1(z)

A`(z)2`k−2 | D(`) |0 W (`)

)
≥ `k−1 − `k−2 − 1 = `k−2(`− 1)− 1 ≥ k.

Hence, we complete the verification of (3.5):

gk−1(z)

A`(z)2`k−2 | D(`) ≡ Tr

((
gk−1(z)

A`(z)2`k−2 | D(`)

)
· h(z)`

k−1

)
(mod `k).

By examining the q-expansion (we omit the details), we see that

rk,`(z) := Tr

((
gk−1(z)

A`(z)2`k−2 | D(`)

)
· h(z)`

k−1

)
∈ S`k−1(`−1)

satisfies the conclusion of the proposition. �
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We simplify the second summand in (3.2) as follows:(
gk−1(z)E`−1(z)`

k−2(`−1) − gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−1

)
| D(`)

=

(
E`−1(z)`

k−2(`−1) ·
(
gk−1(z)− gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−2

))
| D(`).

Using Proposition 2.5, we observe that

(3.14) Bk,`(z) := gk−1(z)− gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−2 ≡ 0 (mod `k−1)

and that E`−1(z)`
k−2(`−1) ≡ 1 (mod `). We conclude that

E`−1(z)`
k−2(`−1) · Bk,`(z)

`k−1
≡ Bk,`(z)

`k−1
(mod `).

Multiplying by `k−1 gives

E`−1(z)`
k−2(`−1) ·Bk,`(z) ≡ Bk,`(z) (mod `k).

Therefore, the second summand in (3.2) modulo `k is

(3.15) Bk,`(z) | D(`) ∈M !
`k−2(`−1)(Γ0(`)) ∩ Z(`)[[q]].

Proposition 3.3. The form (3.15) is congruent modulo `k to a form in S`k−1(`−1) ∩ Z[[q]].

Remark. The proof shows that the weight can be taken to be `k−2(`− 1) + `2−1
2

.

Proof. In view of (1.7), (2.10), (3.14), and Proposition 2.5, we have

Bk,`(z)

`k−1
| D(`) =

(
Bk,`(z)

`k−1
· Φ`(z)

)
| U(`) ≡

(
Bk,`(z)

`k−1
·∆(z)

`2−1
24

)
| U(`)

≡
(
Bk,`(z)

`k−1
·∆(z)

`2−1
24

)
| U(`) · E`−1(z)`

k−2(`−1)− `+1
2 (mod `).

Multiplying by `k−1 yields

Bk,`(z) | D(`) ≡
(
Bk,`(z) ·∆(z)

`2−1
24

)
| U(`) · E`−1(z)`

k−2(`−1)− `+1
2 (mod `k).

This form lies in M !
`k−1(`−1)

(Γ0(`)). It remains to show that(
Bk,`(z) ·∆(z)

`2−1
24

)
| U(`) =

((
gk−1(z)− gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−2

)
·∆(z)

`2−1
24

)
| U(`)

is congruent modulo `k to a cusp form on SL2(Z). Since gk−1(z)∆(z)
`2−1
24 ∈ S

`k−2(`−1)+ `2−1
2

and `k−2(` − 1) + `2−1
2
− 1 ≥ k, we see from Proposition 2.3 that gk−1(z)∆(z)

`2−1
24 | U(`) is

congruent modulo `k to a form in the same space. Therefore, it suffices to show that(
gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−2

∆(z)
`2−1
24

)
| U(`)

is congruent modulo `k to a form in S
`k−2(`−1)+ `2−1

2

. For convenience, we define

Ck,`(z) :=
gk−1(z)

A`(z)2`k−2 · E`−1(z)`
k−2

∆(z)
`2−1
24 ∈M !

`k−2(`−1)+ `2−1
2

(Γ0(`)).
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Using the trace (2.5), we study

`
`k−2(`−1)+ `2−1

2
2

−1Tr
(
Ck,` |`k−2(`−1)+ `2−1

2

W (`)
)

= Ck,`(z) | U(`)

+ `
`k−2(`−1)+ `2−1

2
2

−1Ck,` |`k−2(`−1)+ `2−1
2

W (`).

By Lemma 2.1 (3), this form is on SL2(Z). Therefore, we show that

(3.16) `
`k−2(`−1)+ `2−1

2
2

−1Ck,` |`k−2(`−1)+ `2−1
2

W (`) ≡ 0 (mod `k).

Employing (2.3) and Lemma 2.1 (4), we obtain(
gk−1E

`k−2

`−1 ∆
`2−1
24

)
|
2`k−2(`−1)+ `2−1

2

W (`)

= `
2`k−2(`−1)+ `2−1

2
2

(
gk−1(z)E`−1(z)`

k−2

∆(z)
`2−1
24

)
| V (`)

= ``
k−2(`−1)+ `2−1

4 gk−1(`z)E`−1(`z)`
k−2

∆(`z)
`2−1
24 .(3.17)

Next, we use (2.1), (2.7), and (2.8) to compute A2`k−2

` |`k−2(`−1) W (`):

A2`k−2

` |`k−2(`−1) W (`) = `−
`k−2(`−1)

2 z−`
k−2(`−1)

(
η
(−1
`z

)`
η
(
−1
z

))2`k−2

= `−
`k−2(`−1)

2 z−`
k−2(`−1)

( `zi ) `
2(

z
i

) 1
2

· η(`z)`

η(z)

2`k−2

= `
`k−1+`k−2

2 i`
k−2(`−1)

(
η(`z)`

η(z)

)2`k−2

.(3.18)

We substitute (3.17) and (3.18) to show that

`
`k−2(`−1)+ `2−1

2
2

−1Ck,` |`k−2(`−1)+ `2−1
2

W (`)

=
`

`k−2(`−1)
2

+ `2−1
4
−1+`k−2(`−1)+ `2−1

4 gk−1(`z)E`−1(`z)`
k−2

∆(z)
`2−1
24

`
`k−1+`k−2

2 i`k−2(`−1)
(
η(`z)`

η(z)

)2`k−1

= ``
k−2(`−2)+ `2−1

2
−1i`

k−2(`−1) · gk−1(`z)E`−1(`z)`
k−2

∆(`z)
`2−1
24(

η(`z)`

η(z)

)2`k−1 .

We recall that gk−1(z), E`−1(z), ∆(z), and η(`z)`

η(z)
∈ Z(`)[[q]]. It follows, for all k ≥ 2 and all

primes ` ≥ 5, that

v`

(
`

`k−2(`−1)+ `2−1
2

2
−1Ck,` |`k−2(`−1)+ `2−1

2

W (`)

)
≥ `k−2(`− 2) +

`2 − 1

2
− 1 ≥ 3`k−2 ≥ k,

which verifies (3.16), and with it, the proposition. �
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We now turn to the third summand in (3.2). Using Proposition 2.5 and the hypothesis
that gk(z) ≡ gk−1(z) (mod `k−1), we find that

(3.19) Fk,`(z) := gk(z)− gk−1(z)E`−1(z)`
k−2(`−1) ≡ 0 (mod `k−1).

We prove the following proposition.

Proposition 3.4. The form Fk,`(z) | D(`) is congruent modulo `k to a form in S`k−1(`−1)∩ Z[[q]].

Remark. The proof shows that the weight can be taken to be (`k−2 + 1)(`− 1).

Proof. From (1.7), (2.10), and (3.19), we deduce that

Fk,`(z)

`k−1
| D(`) ≡

(
Fk,`(z)

`k−1
·∆(z)

`2−1
24

)
| U(`) (mod `),

and we observe that
Fk,`(z)

`k−1 ·∆(z)
`2−1
24 ∈ S

`k−1(`−1)+ `2−1
2

∩Z(`)[[q]]. Since ` ≥ 5, an application

of Lemma 2.2 (1) yields

w`

((
Fk,`(z)

`k−1
·∆(z)

`2−1
24

)
| U(`)

)
≤ `+

`k−1(`− 1) + `2−1
2
− 1

`

= (`− 1)

(
`k−2 + 1 +

`+ 3

2`

)
< (`− 1)(`k−2 + 2).(3.20)

From (3.20) and Proposition 2.5, we see that there exists fk,`(z) ∈ S(`k−2+1)(`−1) with

(3.21)

(
Fk,`(z)

`k−1
·∆(z)

`2−1
24

)
| U(`) ≡ fk,`(z) ≡ fk,`(z)E`−1(z)`

k−2(`−1)−1 (mod `).

Multiplying by `k−1 produces(
Fk,`(z) ·∆(z)

`2−1
24

)
| U(`) ≡ `k−1fk,`(z)E`−1(z)`

k−2(`−1)−1 (mod `k),

and we note that fk,`(z)E`−1(z)`
k−2(`−1)−1 ∈ S`k−1(`−1) ∩ Z[[q]]. �

Lemma 3.1 now follows from Propositions 3.2, 3.3, and 3.4. �

Corollary 3.5. Let ` ≥ 5 be prime, let k ≥ 1, and let b ≥ 0. Then there exists
fk(b; z) ∈M`k−1(`−1) ∩ Z(`)[[q]] with L`(b; z) ≡ fk(b; z) (mod `k).

Proof. We proceed by induction on b. Let b = 0; for all k ≥ 1, Proposition 2.5 gives

L`(0; z) = 1 ≡ E`−1(z)`
k−1

(mod `k).

For the induction step, let b ≥ 0 be a fixed even integer, and suppose, for all k ≥ 1, that
there exists fk(b; z) ∈ M`k−1(`−1) ∩ Z(`)[[q]] with L`(b; z) ≡ fk(b; z) (mod `k). In particular,
the form L`(b; z) satisfies the hypotheses of Lemma 3.1. For all k ≥ 1, the lemma now
implies that there exists hk(b; z) ∈M`k−1(`−1) with

L`(b+ 1; z) = L`(b; z) | D(`) ≡ hk(b; z) (mod `k).

In this way, we satisfy the conclusion of the corollary for index b+1 with fk(b+1; z) := hk(b; z).
Next, we observe, for all k ≥ 1 and primes ` ≥ 5, that `k−1(` − 1) − 1 ≥ k. It follows from
Proposition 2.3 that

L`(b+2; z) = L`(b+1; z) | U(`) ≡ fk(b+1; z) | U(`) ≡ fk(b+1; z) | T (`, `k−1(`−1)) (mod `k).
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Part (2) of Lemma 2.1 implies that fk(b+ 2; z) := fk(b+ 1; z) | T (`, `k−1(`− 1)) satisfies the
conclusion of the corollary for index b+ 2. �

Remark: Let ` ≥ 5 be prime, let m ≥ 1, and let M(`,m) denote the Z/`mZ-module of
modular forms in M`m−1(`−1) ∩ Z(`)[[q]] with coefficients reduced modulo `m. Corollary 3.5
implies the following nesting of Z/`mZ-modules:

M(`,m) ⊇ Λeven
` (0,m) ⊇ Λeven

` (2,m) ⊇ · · · ⊇ Λeven
` (2b,m) ⊇ · · · ,

M(`,m) ⊇ Λodd
` (1,m) ⊇ Λodd

` (3,m) ⊇ · · · ⊇ Λodd
` (2b+ 1,m) ⊇ · · · .

Since M(`,m) has finite size, these sequences must stabilize as the finite-rank modules
Ωeven
` (m) (respectively, Ωodd

` (m)), as asserted in Theorem 1.4. In Section 4, we exhibit
injections into S`−1 to show that the ranks are bounded independently of m.

Our second main lemma of this section asserts, subject to certain hypotheses, that the
operator Y (`) (as in 1.9) contracts the weight of a form in M`j−1(`−1)∩Z[[q]] with coefficients
reduced modulo `j.

Lemma 3.6. Let ` ≥ 5 be prime, let n ≥ 1, and let Υ(z) ∈ Z(`)[[q]]. Suppose, for all
1 ≤ j ≤ n that there exists gj(z) ∈ M`j−1(`−1) ∩ Z[[q]] with Υ(z) ≡ gj(z) (mod `j).
Suppose further that Υ(z) | D(`) ≡ 0 (mod `). Then for all 2 ≤ j ≤ n, there exists
hj(z) ∈ S`j−2(`−1) ∩ Z[[q]] with Υ(z) | Y (`) ≡ hj(z) (mod `j).

Proof. Suppose that j = 2 and ` = 5. Theorem 3.1 implies that g2(z) | D(5) is congruent
modulo 25 to a form in S20∩Z(5)[[q]] ⊆ C∆(z)E4(z)2. By hypothesis, we have g2(z) | D(5) ≡
g1(z) | D(5) ≡ 0 (mod 5). From these facts, we find that there exists c ∈ Z with

g2(z) | D(5) ≡ 5c∆(z)E4(z)2 (mod 25).

Dividing by 5 yields

g2(z) | D(5)

5
≡ c∆(z)E4(z)2 ≡ c∆(z) (mod 5).

We apply U(5) and observe that ∆(z) | U(5) ≡ 0 (mod 5) to obtain(
g2(z) | D(5)

5

)
| U(5) ≡ c∆(z) | U(5) ≡ 0 (mod 5).

To conclude, we multiply by 5, giving

g2(z) | Y (5) = g2(z) | D(5) | U(5) ≡ 0 (mod 25).

Now, we suppose that j ≥ 2 and ` ≥ 5 excepting (j, `) = (2, 5). We decompose Υ(z) | Y (`)
using modular forms in M`j−1(`−1) ∩ Z(`)[[q]], as in the proof of Lemma 3.1:

Υ(z) | Y (`) ≡
(

gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−1

)
| Y (`)

+

(
gj−1(z)E`−1(z)`

j−2(`−1) − gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−1

)
| Y (`)(3.22)

+
(
gj(z)− gj−1(z)E`−1(z)`

j−2(`−1)
)
| Y (`) (mod `j).

We study each summand in turn.
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In view of Proposition 2.5 and (1.9), the first summand is(
gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−1

)
| Y (`) ≡ gj−1(z)

A`(z)2`j−2 | Y (`) ≡ gj−1(z)

A`(z)2`j−2 | D(`) | U(`) (mod `j).

Since j ≥ 2, Proposition 2.5 and the hypotheses of the lemma imply that

Υ(z) | D(`) ≡ gj−1(z)

A`(z)2`j−2 | D(`) ≡ 0 (mod `).

Using Proposition 2.5 again, we have

(3.23)
1

`

(
gj−1(z)

A`(z)2`j−2 | D(`)

)
≡ 1

`

(
gj−1(z)

A`(z)2`j−2 | D(`)

)
E`−1(z)`

j−2

(mod `j−1).

We define

Gj,`(z) :=

(
gj−1(z)

A`(z)2`j−2 | D(`)

)
E`−1(z)`

j−2 ∈M !
`j−2(`−1)(Γ0(`)) ∩ Z(`)[[q]].

Multiplying by ` and applying U(`) in (3.23) gives

(3.24)
gj−1(z)

A`(z)2`j−2 | Y (`) ≡ Gj,`(z) | U(`) (mod `j).

Proposition 3.7. The form (3.24) is congruent modulo `j to a form in S`j−2(`−1) ∩ Z[[q]].

Proof. Using (2.5), we consider

`
`j−2(`−1)

2
−1Tr

(
Gj,` |`j−2(`−1) W (`)

)
= Gj,`(z) | U(`) + `

`j−2(`−1)
2

−1Gj,` |`j−2(`−1) W (`).

From Lemma 2.1 (3), we see that this form is on SL2(Z). Therefore, we show that

(3.25) `
`j−2(`−1)

2
−1Gj,` |`j−2(`−1) W (`) ≡ 0 (mod `j).

Since E`−1(z) is on SL2(Z), Lemma 2.1 (4) yields

E`j−2

`−1 |`j−2(`−1) W (`) = `
`j−2(`−1)

2 E`−1(z)`
j−2 | V (`).

Using (3.13), we conclude for all j ≥ 2 and all primes ` ≥ 5 excepting (j, `) = (2, 5) that

v`

(
`

`j−2(`−1)
2

−1Gj,` |`j−2(`−1) W (`)

)
=
`j−2(`− 1)

2
− 1 + v`

(
gj−1(z)

A`(z)2`j−2 | D(`) |0 W (`)

)
+ v`

(
E`j−2

`−1 |`j−2(`−1) W (`)
)
≥ `j−2(`− 1)

2
− 1− `j−2 − 2 +

`j−2(`− 1)

2
= `j−2(`− 2)− 3 ≥ j.

Therefore, (3.25) holds, and the first summand in (3.22) is congruent to a form on SL2(Z)
of weight `j−2(`− 1). An examination of its q-series reveals that it is a cusp form (we omit
the details). �

The second summand simplifies as(
gj−1(z)E`−1(z)`

j−2(`−1) − gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−1

)
| Y (`)

≡
(
gj−1(z)− gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−2

)
| Y (`) (mod `j).
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As in (3.14), we have

(3.26) Bj,`(z) := gj−1(z)− gj−1(z)

A`(z)2`j−2 · E`−1(z)`
j−2 ≡ 0 (mod `j−1).

Proposition 3.8. The form Bj,`(z) | Y (`) is congruent modulo `j to a form in S`j−2(`−1)∩ Z[[q]].

Remark. The weight can be taken to be (`j−3 + 1)(`− 1) if j ≥ 3.

Proof. From Proposition 3.3, we find that there exists fj,`(z) ∈ S
`j−2(`−1)+ `2−1

2

∩ Z[[q]] with(
Bj,`(z) ·∆(z)

`2−1
24

)
| U(`) ≡ fj,`(z) (mod `j).

Using (1.9), (2.10), and (3.26) we deduce that

Bj,`(z)

`j−1
| Y (`) ≡

(
Bj,`(z)

`j−1
·∆(z)

`2−1
24

)
| U(`) | U(`) ≡ fj,`(z)

`j−1
| U(`) (mod `).

For j ≥ 3, Lemma 2.2 yields

w`

(
fj,`(z)

`j−1
| U(`)

)
≤ `+

`j−2(`− 1) + `2−1
2
− 1

`

= (`− 1)

(
`j−3 + 1 +

`+ 3

2`

)
< (`− 1)(`j−3 + 2).

In view of the calculation (3.1) for j = 2, we find for ` ≥ 5 and j ≥ 2, that there exists

tj,`(z) ∈

{
S`−1, j = 2;

S(`j−3+1)(`−1), j ≥ 3

for which

Bj,`(z)

`j−1
| Y (`) ≡ fj,`(z)

`j−1
| U(`) ≡

{
tj,`(z), j = 2;

tj,`(z)E`−1(z)`
j−3(`−1)−1, j ≥ 3

(mod `).

The forms on the right side lie in S`j−2(`−1). Multiplying by `j−1, we have

Bj,`(z) | Y (`) ≡

{
`j−1tj,`(z), j = 2;

`j−1tj,`(z)E`−1(z)`
j−3(`−1)−1, j ≥ 3

(mod `j).

Therefore, the second summand in (3.22) is congruent modulo `j to a form in S`j−2(`−1). �

For the third summand, we use work from the proof of Proposition 3.4. As in (3.19), we
have

(3.27) Fj,`(z) := gj(z)− gj−1(z)E`−1(z)`
j−2(`−1) ≡ 0 (mod `j−1).

Proposition 3.9. The form Fj,`(z) | Y (`) is congruent modulo `j to a form in S`j−2(`−1)∩ Z[[q]].

Remark. The weight can be taken to be (`j−3 + 1)(`− 1) if j ≥ 3.

Proof. From (1.7), (2.10), (3.21), and (3.27), we see that

Fj,`(z)

`j−1
| D(`) ≡

(
Fj,`(z)

`j−1
·∆(z)

`2−1
24

)
| U(`) (mod `)
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is congruent modulo ` to a form in S(`j−2+1)(`−1). With ` ≥ 5 and j = 2, Lemma 2.2 gives

w`

((
F2,`(z)

`
·∆(z)

`2−1
24

)
| U(`) | U(`)

)
≤ `+

2(`− 1)− 1

`
= (`− 1)

(
1 +

3

`

)
< 2(`− 1).

For j ≥ 3, Lemma 2.2 implies that

w`

((
Fj,`(z)

`j−1
·∆(z)

`2−1
24

)
| U(`) | U(`)

)
≤ `+

(`j−2 + 1) (`− 1)− 1

`

= (`− 1)

(
`j−3 + 1 +

2

`

)
< (`− 1)

(
`j−3 + 2

)
.

Hence, for ` ≥ 5 and j ≥ 2, there exists

sj,`(z) ∈

{
S`−1, j = 2;

S(`j−3+1)(`−1), j ≥ 3

for which

Fj,`(z)

`j−1
| Y (`) ≡

(
Fj,`(z)

`j−1
·∆(z)

`2−1
24

)
| U(`) | U(`)

≡

{
sj,`(z), j = 2;

sj,`(z)E`−1(z)`
j−3(`−1)−1, j ≥ 3

(mod `).

The forms on the right side lie in S`j−2(`−1). Multiplying by `j−1, we obtain

Fj,`(z) | Y (`) ≡

{
`j−1sj,`(z), j = 2;

`j−1sj,`(z)E`−1(z)`
j−3(`−1)−1, j ≥ 3

(mod `j).

We deduce that the third summand in (3.22) is congruent modulo `j to a form in S`j−2(`−1).
�

Lemma 3.6 follows from Proposition 3.7, Proposition 3.8, and Proposition 3.9. �

4. The modules Λ`(b,m) and Ω`(m).

4.1. Module Structure of Ωodd
` (m) and Ωeven

` (m). In this section, we examine the rela-
tionship between Ωodd

` (m), Ωeven
` (m), and S`−1. Let b ≥ 1 be odd. We recall the commutative

diagram (1.12) of Z/`mZ-module homomorphisms:

Λodd
` (b,m) Λeven

` (b+ 1,m)
U(`)

Λodd
` (b+ 2,m)

D(`)

Λeven
` (b+ 3,m)

U(`)

X(`) Y (`)

The remark following Corollary 3.5 implies, for all odd b ≥ b`(m), that Λodd
` (b,m) =

Ωodd
` (m) and that Λeven

` (b + 1,m) = Ωeven
` (m). Hence, for all such b, the homomorphisms

U(`) and D(`) are isomorphisms between Ωodd
` (m) and Ωeven

` (m). It follows that X(`) and
Y (`) are automorphisms on Ωodd

` (m) and Ωeven
` (m), respectively.

We now study the structure that these maps impose on the modules Ωodd
` (m) and Ωeven

` (m).
We recall two elementary results from commutative algebra.
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Lemma 4.1. Let A be a finite local ring, let M be an A-module of finite rank r, and let
T : M → M be an A-isomorphism. Then there exists an integer n > 0 such that T n is the
identity map on M .

Proof. By Nakayama’s Lemma (see [15], for example), an A-isomorphism T : M → M is
representable by a matrix in GLr(A). Since GLr(A) is a finite group, the isomorphism T
must have finite order. �

Lemma 4.2. Let A be a local ring, let M be a finitely generated A-module, and let T :
M → M be an A-isomorphism. Then for all m ∈M and n ≥ 0, we have

m ∈ A[T n(m), T n+1(m), T n+2(m), . . .].

Proof. If A is finite, Lemma 4.1 implies the result. Now, suppose that A is infinite, and
let m ∈ M and n ≥ 1. Since T n−1(m) satisfies the characteristic polynomial for T , it is
expressible in terms of T n(m), T n+1(m), . . .. Similarly, if n ≥ 2, then T n−2(m) is expressible
in terms of T n−1(m), T n(m), . . . , and hence, in terms of T n(m), . . . . The result follows from
iterating this process. �

Next, we give explicit injective Z/`mZ-module homorphisms on Ωodd
` (m) and Ωeven

` (m)
into S`−1.

Theorem 4.3. Let ` ≥ 5 be prime, and let m ≥ 1. Then there exist injective Z/`mZ-module
homomorphisms

Πo : Ωodd
` (m) ↪→ S`−1 ∩ Z(`)[[q]],

Πe : Ωeven
` (m) ↪→ S`−1 ∩ Z(`)[[q]]

which satisfy the following property. For all µ ∈ Ωodd
` (m) and ν ∈ Ωeven

` (m) with v`(µ) = i < m
and v`(ν) = j < m, we have

Πo(µ) ≡ µ (mod `i+1), Πe(ν) ≡ ν (mod `j+1).

Proof. We consider the following two submodules of S`m−1(`−1) ∩ Z(`)[[q]]:

S0 :=
{
f(z)E`−1(z)`

m−1−1 : f(z) ∈ S`−1 ∩ Z(`)[[q]]
}
,

S1 :=

{
g(z) : g(z) =

∞∑
m=m0

ag(m)qm ∈ S`m−1(`−1) ∩ Z(`)[[q]] with m0 >
⌊
`−1
12

⌋}
.

We can construct a basis {f1 = q + · · · , . . . , fn = qn + · · · } for S`m−1(`−1) ∩ Z(`)[[q]] with

fk(z) ∈ S0 for k ≤ b `−1
12
c and fk(z) ∈ S1 otherwise. It follows that S`m−1(`−1) ∩ Z(`)[[q]] =

S0 ⊕ S1. Hence, g(z) ∈ S`m−1(`−1) ∩ Z(`)[[q]] is uniquely expressible as g(z) = g0(z) + g1(z)
with gi(z) ∈ Si. Next, we reduce coefficients of the forms in these spaces modulo `m, and
we define S∗ ⊂ S`m−1(`−1) ∩Z(`)[[q]] to be the largest Z/`mZ-submodule such that X(`) is an
isomorphism on S∗ modulo `m.

Lemma 4.4. Suppose that f(z) ∈ S∗ has v`(f) = i < m, and that f(z) = f0(z) + f1(z) with
fw(z) ∈ Sw. Then we have v`(f1) > i.

Remark. Using (2.12), we see that since v`(f) = i ≥ min{v`(f0), v`(f1)} and v`(f1) > i, we
must have v`(f0) = i.
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Proof. We first assert that

(4.1) v`(f0) ≥ i.

By definition of S0 and S1, we may write

f0(z) =
∞∑

n=n0

a0(n)qn, 0 ≤ n0 ≤
⌊
`− 1

12

⌋
; f1(z) =

∞∑
n=n1

a1(n)qn, n1 >

⌊
`− 1

12

⌋
.

We also write f(z) =
∑
af (n)qn, and we note that v`(f) = i = min{v`(af (n))}. It follows

for all n0 ≤ n ≤ n1 − 1, that v`(af (n)) = v`(a0(n)) ≥ i. Hence, we must have v`(f0) ≥ i.
We now suppose that v`(f1) ≤ i and argue by contradiction. We require two claims.

Claim 4.5. If v`(f1) ≤ i, then we have v`(f0) ≥ v`(f1) = i.

Proof of Claim 4.5. If we suppose that v`(f0) < v`(f1), then it follows by (2.12) that

i = v`(f) = min{v`(f0), v`(f1)} = v`(f0) < v`(f1) ≤ i,

a contradiction. Therefore, we have v`(f0) ≥ v`(f1). Next, if we suppose that v`(f0) > v`(f1),
we find from (2.12) that

i = v`(f) = min{v`(f0), v`(f1)} = v`(f1).

If we suppose that v`(f0) = v`(f1), then the hypothesis together with (4.1) give

i ≤ v`(f0) = v`(f1) ≤ i.

�

Claim 4.6. Let ` ≥ 5 be prime, and suppose that f(z) 6≡ 0 (mod `) is in Mk ∩Z(`)[[q]] with
k ≡ 0 (mod `− 1).

(1) Suppose that w`(f) = `− 1. Then we have w`(f | X(`)) ≤ w`(f).
(2) Suppose that w`(f) > `− 1. Then we have w`(f | X(`)) < w`(f).

Proof of Claim 4.6. We first suppose that w`(f) = `− 1. When ` ∈ {5, 7, 11}, we note that
M`−1 ∩ Z(`)[[q]] ⊆ CE`−1. Hence, from Proposition 2.5, we see that there are no forms f(z)
with w`(f) = ` − 1. Moreover, a form f(z) ∈ M`−1 ∩ Z(`)[[q]] is congruent modulo ` to a
constant. Therefore, we have w`(f) = 0.

For ` ≥ 13, we apply Lemma 2.2, (1.7), (1.8), and (2.10) to obtain

w`(f | X(`)) = w` (f | U(`) | D(`)) = w`

((
f | U(`) ·∆

`2−1
24

)
| U(`)

)
≤ `+

w`

(
f | U(`) ·∆ `2−1

24

)
− 1

`
≤ `+

`− 1 + `2−1
2
− 1

`
= (`− 1)

(
3`+ 5

2`

)
< 2(`− 1).

Part (1) of the claim now follows for ` ≥ 13.
When w`(f) > ` − 1, we first observe that the result holds if f(z) | U(`) ≡ 0 (mod `).

Therefore, we suppose that f(z) | U(`) 6≡ 0 (mod `). As above, we apply Lemma 2.2, (1.7),
(1.8), and (2.10) to deduce the conclusion of the lemma. To begin, we we find that

`− 1 < w`

(
f | U(`) ·∆

`2−1
24

)
≤ `+

w`(f)− 1

`
+
`2 − 1

2
.
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Hence, we compute

w` (f | X(`)) = w` (f | U(`) | D(`)) = w`

((
f | U(`) ·∆

`2−1
24

)
| U(`)

)
≤ `+

(
`+ w`(f)−1

`
+ `2−1

2

)
− 1

`
=

1

`2

(
(`2 − 1)

(
3`+ 2

2

)
+ w`(f)

)
.

We conclude that 3`+2
2

< w`(f) implies w`(f | X(`)) < w`(f). For ` ≥ 7, the conditions

k ≡ 0 (mod `) and w`(f) > `− 1 give w`(f) ≥ 2(`− 1) > 3`+2
2

. Part (2) of the claim follows
for ` ≥ 7.

For ` = 5, it suffices to show that 3`+2
2

= 17/2 < w5(f). The hypotheses w5(f) > 4 and
k ≥ 0 (mod 4) imply that w5(f) ∈ {8, 12, . . . }. Since M8 ∩ Z(5)[[q]] ⊆ CE2

4 , we see from
Proposition 2.5 that there are no forms f(z) with w5(f) = 8. Hence, we have 17/2 < 12 ≤
w5(f) which gives w5(f(z) | X(5)) ≤ w5(f). �

Returning to the proof of Lemma 4.4, we consider the following sequence of modular forms
in S`m−1(`−1) ∩ Z(`)[[q]]:

h0(z) := f(z), h1(z) := h0(z) | X(`), h2(z) := h1(z) | X(`), . . . .

Since f(z) ∈ S∗, Lemma 4.1 implies that there exists n ≥ 1 such that h0(z) ≡ hn(z)
(mod `m). We recall that v`(f) = i < m to see that `−ih0(z) ≡ `−ihn(z) (mod `). Hence,
we have w`(`

−ih0) = w`(`
−ihn). Supposing, by way of contradiction, that v`(f1) ≤ v`(f) = i,

Claim 4.5 gives v`(f0) ≥ v`(f1) = i. Since f0(z) ∈ S0 and f1(z) ∈ S1, we observe that

w`(`
−if0) ≤ `− 1 < 2(`− 1) ≤ w`(`

−if1).

Using this fact together with (2.9), we deduce that

w`(`
−ih0) = w`(`

−i(f0 + f1)) = max{w`(`−if0), w`(`
−if1)} = w`(`

−if1) > `− 1.

Therefore, Claim 4.6 gives

w`(`
−ih0) > w`(`

−ih1) ≥ w`(`
−ih2) ≥ · · · .

In particular, we have w`(`
−ih0) > w`(`

−ihn), a contradiction. �

Theorem 4.3 depends on the following corollary to Lemma 4.4

Corollary 4.7. Let f(z), g(z) ∈ S∗, and suppose that f(z) = f0(z) + f1(z) and g(z) =
g0(z)+g1(z) with f0(z), g0(z) ∈ S0 and f1(z), g1(z) ∈ S1. Suppose further that f0(z) ≡ g0(z)
(mod `m). Then we have f(z) ≡ g(z) (mod `m).

Proof. Suppose on the contrary that v`(f − g) = j < m. Then we have

f − g = (f0 − g0) + (f1 − g1) ∈ S∗, f0 − g0 ∈ S0, f1 − g1 ∈ S1.

We apply Lemma 4.4 to deduce that v`(f1−g1) > j; the hypothesis gives v`(f0−g0) ≥ m > j.
Hence, we find from (2.12) that

v`(f − g) = j ≥ min{v`(f0 − g0), v`(f1 − g1)} > j,

a contradiction. �
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We now construct the injection Πo : Ωodd
` (m) ↪→ S`−1 ∩ Z(`)[[q]] as a composition of

Z/`mZ-module homomorphisms Φ1, Φ2, and Φ3.
Corollary 3.5 and the remark following it imply that X(`) is an isomorphism on Ωodd

` (m).
Since S∗ is the largest Z/`mZ-submodule of S`m−1(`−1) ∩ Z(`)[[q]] with this property, we see
that Ωodd

` (m) ⊆ S∗; we define Φ1 to be the inclusion Ωodd
` (m) ↪→ S∗. To define Φ2, we let

f(z) = f0(z) + f1(z) ∈ S∗ with f0 ∈ S0 and f1 ∈ S1, and we suppose that v`(f) = i < m.
Lemma 4.4 implies that f(z) ≡ f0(z) (mod `v`(f)+1). Therefore, the map Φ2 : f(z) 7→ f(z)
(mod `v`(f)+1) has Φ2 : S∗ → S0. Furthermore, Φ2 is injective by Corollary 4.7. We next
define the map Φ3 on S0. Suppose that f(z) ∈ S0. By definition of S0, there exists g(z) ∈
S`−1 ∩Z(`)[[q]] with f(z) = g(z)E`−1(z)`

m−1−1. We define Φ3 : S0 → S`−1 ∩Z(`)[[q]] to be the
isomorphism that maps f(z) to g(z). To summarize, we have

Πo : Ωodd
` (m)

Φ1→ S∗ Φ2→ S0
Φ3→ S`−1 ∩ Z(`)[[q]];

the first two maps are injections, while the third is an isomorphism. Moreover, if we suppose
that f(z) ∈ Ωodd

` (m) has v`(f) < m, then we have

Πo(f(z)) ≡ f(z) (mod `v`(f)+1).

One can similarly construct Πe : Ωeven
` (m) ↪→ S`−1∩Z(`)[[q]]. Since S∗ | U(`) | D(`) = S∗ |

X(`) = S∗, we observe that S∗ | U(`) ∼= S∗. An argument similar to the above shows that
S∗ | U(`) is the largest submodule of S`m−1(`−1) ∩ Z(`)[[q]] on which Y (`) is an isomorphism.
In this setting, one can prove facts analogous to Lemma 4.4 and Corollary 4.7. One can also
define injective homomorphisms Φ′1 and Φ′2, and an isomorphism Φ′3 whose composition

Πe : Ωeven
` (m)

Φ′1→ S∗ | U(`)
Φ′2→ S0

Φ′3→ S`−1 ∩ Z(`)[[q]]

is the desired map. �

Remark. The injections Πo and Πe preserve order of vanishing. From the definition (1.7)

of D(`), we find that f(z) ∈ Ωodd
` (m) has order of vanish at infinity >

⌊
`2 − 1

24`

⌋
. Hence,

we recover the bound R` on the Z/`mZ-ranks of Ωodd
` (m) and Ωeven

` (m) as in (1.13) of
Theorem 1.4.

4.2. Proof of Corollary 1.3. We suppose that b ≥ 1 is odd. The proof holds with suitable
modifications for even b. Let S be the largest subspace of S`−1∩Z(`)[[q]] over Z/`Z on which
X(`) is an isomorphism. We proceed by induction on m. For m = 1 and b ≥ b`(1), we have
L`(b; z) ∈ Ωodd

` (1) ⊆ S. By Lemma 4.1, X(`) has finite order, c`, on S. The m = 1 case of
Corollary 1.3 follows from

L`(b; z) ≡ L`(b; z) | X(`)c` (mod `).

Moreover, we note, for all F (z) ∈ S, that

(4.2) F (z) | X(`)c` ≡ F (z) (mod `).

Next, we fix m ≥ 2, we set

X (`,m) := X(`)c``
m−2

,

and we suppose, for b′ ≥ b`(m− 1), that

L`(b
′; z) ≡ L`(b

′; z) | X (`,m) ≡ L`(b
′ + 2c``

m−2; z) (mod `m−1).
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Let b ≥ b`(m) ≥ b`(m− 1). Since b ≥ b`(m− 1), the inductive hypothesis gives

L`(b; z) ≡ L`(b; z) | X (`,m) (mod `m−1);

since b ≥ b`(m), we find that

L`(b; z), L`(b; z) | X (`,m) ∈ Ωodd
` (m).

It follows that there exists f(z) ∈ Ωodd
` (m) with f(z) ≡ 0 (mod `m−1) for which

(4.3) L`(b; z) ≡ L`(b; z) | X (`,m) + f(z) ≡ L`(b+ 2c``
m−2; z) + f(z) (mod `m).

We next recall that S∗ is the largest Z/`mZ-submodule of S`m−1(`−1) ∩ Z(`)[[q]] on which
X(`) is an isomorphism modulo `m. We let µ be the rank of S∗, and we let

(4.4) {g1(z), . . . , gµ(z)}
be a basis for S∗. There exists a submodule N ∗ ⊆ S`m−1(`−1) ∩ Z(`)[[q]] such that

(4.5) S`m−1(`−1) = S∗ ⊕N ∗.
We observe, for all f(z) ∈ N ∗, that there exists tf ≥ 1 with

(4.6) f(z) | X(`)tf ≡ 0 (mod `m).

We now give lemmas necessary for the conclusion of Corollary 1.3.

Lemma 4.8. For 1 ≤ i ≤ µ, let gi(z) be as in (4.4). We have v`(gi) = 0.

Proof. We suppose on the contrary that, for example, v`(g1) ≥ 1. It follows that there exists
h(z) ∈ S`m−1(`−1) with

(4.7) g1(z) ≡ `v`(g1)h(z) (mod `m)

and v`(h) = 0. Using (4.5), we see that there exists hS∗(z) ∈ S∗ and hN ∗ ∈ N ∗ with

(4.8) h(z) ≡ hS∗(z) + hN ∗(z) (mod `m).

Now, since hN ∗(z) ∈ N ∗, (4.6) implies that there exists t ≥ 1 such that

(4.9) hN ∗(z) | X(`)t ≡ 0 (mod `m).

We also note by Lemma 4.1 that there exists n ≥ 1 with

(4.10) X(`)n = 1S∗ ,

the identity on S∗. We let k ≥ 1 have nk ≥ t, and we use (4.9) and (4.10) to conclude that

(4.11) hN ∗(z) | X(`)nk ≡ 0, hS∗(z) | X(`)nk ≡ hS∗(z), g1(z) | X(`)nk ≡ g1(z) (mod `m).

From (4.8) and (4.11) we obtain

(4.12) h(z) | X(`)nk ≡ hS∗(z) (mod `m).

Applying X(`)nk in (4.7) and using (4.11), we deduce that

(4.13) `v`(g1)h(z) | X(`)nk ≡ g1(z) | X(`)nk ≡ g1(z) (mod `)m.

We multiply by `v`(g1) in (4.12); substituting the result in (4.13) gives

g1(z) ≡ `v`(g1)hS∗(z) (mod `m).

Since hS∗(z) ∈ S∗, we find α1, . . . , αµ ∈ Z/`mZ with

hS∗(z) ≡ α1g1(z) + · · ·+ αµgµ(z) (mod `m).
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Multiplying by `v`(g1) and using (4.7) yields

0 ≡ (`v`(g1)α1 − 1)g1(z) + `v`(g1)(α2g1(z) + · · ·+ αµgµ(z)) (mod `m).

Assuming that v`(g1) ≥ 1, we have `v`(g1)α1 − 1 6= 0 (mod `m), which contradicts the linear
independence modulo `m of {g1, . . . , gµ}. Hence, we have v`(g1) = 0. �

For the next lemmas, let f(z) ∈ Ωodd
` (m) ⊆ S∗ be as in (4.3). There exists a1, . . . , aµ ∈

Z/`mZ with

(4.14) f(z) ≡ a1g1 + · · ·+ aµgµ (mod `m).

Lemma 4.9. For 1 ≤ j ≤ µ, let aj be as in (4.14). We have aj ≡ 0 (mod `m−1).

Proof. If f(z) ≡ 0 (mod `m), then the result holds with ai ≡ 0 (mod `m) by (4.14) since
{g1, . . . , gµ} is a basis for S∗. Recalling that f(z) ≡ 0 (mod `m−1), it suffices to consider
v`(f) = m − 1. If the statement of the lemma is false, then, for example, we have v`(a1) <
m− 1. Using (4.14) and v`(f) = m− 1, we find that

0 ≡ a1g1 + · · ·+ aµgµ (mod `v`(a1)+1);

multiplying by `m−(v`(a1)+1) gives

0 ≡ `m−(v`(a1)+1)(a1g1 + · · ·+ aµgµ) (mod `m).

We compute v`
(
`m−(v`(a1)+1)a1

)
= m − (v`(a1) + 1) + v`(a1) = m − 1; it follows that

`m−(v`(a1)+1)a1 6≡ 0 (mod `m), contradicting the linear independence of {g1, . . . , gµ}. Hence,
we have a1 ≡ 0 (mod `m−1). �

Lemma 4.10. Let c` be as in (4.2). Then we have

f(z) | X(`)c` ≡ f(z) (mod `m).

Proof. For all 1 ≤ j ≤ µ, we have gj(z) (mod `) in S. Hence, from (4.2), we see that gj(z) |
X(`)c` ≡ gj(z) (mod `m). With aj as in (4.14), Lemma 4.9 implies ajgj(z) | X(`)c` ≡ ajgj(z)
(mod `m). It follows that

f(z) | X(`)c` ≡ (a1g1 + · · ·+ aµgµ) | X(`)c` ≡ a1g1 + · · ·+ aµgµ ≡ f(z) (mod `m).

�

Lemma 4.11. Let 1 ≤ i ≤ `. Then we have

(4.15) L`(b; z) | X (`,m)` ≡ L`(b; z) | X (`,m)`−i − if(z) (mod `m).

Proof. We induct on i. From (4.3) and Lemma 4.10, we compute

L`(b; z) | X (`,m)` ≡ (L`(b; z) | X (`,m)) | X (`,m)`−1

≡ (L`(b; z)− f(z)) | X (`,m)`−1

≡ L`(b; z) | X (`,m)`−1 − f(z) | X (`,m)`−1

≡ L`(b; z) | X (`,m)`−1 − f(z) (mod `m).
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Next, we fix 1 ≤ i ≤ `− 1, and use (4.3), Lemma 4.10, and (4.15) to compute

L`(b; z) | X (`,m)` ≡ L`(b; z) | X (`,m)`−i − if(z)

≡ (L`(b; z) | X (`,m)) | X (`,m)`−(i+1) − if(z)

≡ (L`(b; z)− f(z)) | X (`,m)`−(i+1) − if(z)

≡ L`(b; z) | X (`,m)`−(i+1) − (i+ 1)f(z) (mod `m).

The result follows. �

To complete the proof of Corollary 1.3, we let i = ` in the lemma and recall that f(z) ≡ 0
(mod `m−1) to obtain

L`(b+ 2c``
m−1; z) = L`(b; z) | X (`,m)` ≡ L`(b; z)− `f(z) ≡ L`(b; z) (mod `m).

5. The proof of Theorem 1.2.

5.1. Preliminary lemmas. We observe from Lemma 3.1 (resp. Claim 4.6 (1)) that D(`)
(resp. X(`)) preserves S`−1 ∩ Z(`)[[q]] with coefficients reduced modulo `. We recall that S
is the largest subspace of S`−1 ∩ Z(`)[[q]] over Z/`Z on which X(`) is an isomorphism. We
define

(5.1) d` := min
{
t ≥ 0 : ∀f ∈M`−1 ∩ Z(`)[[q]], f | D(`) | X(`)t ∈ S

}
.

It follows that a simple bound on d` is

d` ≤ dim(S`−1) =

⌊
`− 1

12

⌋
.

We note again, for primes 5 ≤ ` < 1300, that we have d` = 0. We prove the following general
theorem.

Theorem 5.1. Let ` ≥ 5 be prime, let m ≥ 1, and let d` be as in (5.1). Then we have

b`(m) ≤ 2(d` + 1)m− 1 = 2d` + 2m− 1.

Remark. Theorem 1.2 is the case d` = 0.

The proof of Theorem 5.1 requires four preliminary lemmas.

Lemma 5.2. Let ` ≥ 5 be prime, let m ≥ 1, and let d` be as in (5.1). Suppose, for some
even b ≥ 0, that λ(z) ∈ Λeven

` (b,m) and that 0 ≤ v`(λ) = i < m. Suppose further that
f(z) ∈M`−1 ∩ Z(`)[[q]] satisfies

λ(z) ≡ `if(z) (mod `i+1).

Then there exists µ(z) ∈ Ωodd
` (m) such that

λ(z) | D(`) | X(`)d` ≡ µ(z) (mod `i+1).

Proof. Since f(z) ∈ M`−1 ∩ Z(`)[[q]], (5.1) implies that f(z) | D(`) | X(`)d` ∈ S. The
hypotheses on λ(z) imply that `−iλ(z) ∈ Z(`)[[q]] and that `−iλ(z) ≡ f(z) (mod `). We



THE PARTITION FUNCTION MODULO PRIME POWERS. 27

apply Lemma 4.2 with A = Z/`Z, M = S, T = X(`), and m = f(z) | D(`) | X(`)d` to find,
for all n ≥ 0, that

λ(z)

`i
| D(`) | X(`)d` (mod `)(5.2)

∈ SpanZ/`Z

{
λ(z)

`i
| D(`) | X(`)d`+n,

λ(z)

`i
| D(`) | X(`)d`+n+1, . . .

}
.

Observing that i + 1 ≤ m and that λ(z) ∈ Λeven
` (b,m), we see that λ(z) (mod `i+1) ∈

Λeven
` (b, i+ 1). Hence, for all j ≥ 0, we have

(5.3) λ(z) | D(`) | X(`)d`+j (mod `i+1) ∈ Λodd
` (b+ 2(d` + j) + 1, i+ 1).

We multiply (5.2) by `i and we use (5.3) together with the nesting property of the modules
Λodd
` (b,m) as in the remark following Corollary 3.5 to establish for all n ≥ 0 that

λ(z) | D(`) | X(`)d` (mod `i+1)

∈ SpanZ/`i+1Z
{
λ(z) | D(`) | X(`)d`+n, . . .

}
⊆ Λodd

` (b+ 2(d` + n) + 1, i+ 1).

In particular, for odd b′ large enough with b′ > b`(m), we conclude that there exists µ(z) ∈
Ωodd
` (m) = Λodd

` (b′,m) with λ(z) | D(`) | X(`)d` ≡ µ(z) (mod `i+1), as required. �

As in the proof of Theorem 4.3, we set S∗ ⊂ S`m−1(`−1) ∩Z(`)[[q]] to be the largest Z/`mZ-
submodule such that X(`) is an isomorphism on S∗ modulo `m. We need the following
lemma to prove Lemma 5.5 below.

Lemma 5.3. Let ` ≥ 5 be prime, let m ≥ 1, let f(z) ∈ S∗, and suppose that 0 ≤ v`(f) =
i < m. Then for all 1 ≤ s ≤ m − i, the form f(z) is congruent modulo `i+s to a form in
S`s−1(`−1).

Proof. We proceed via induction on s ≥ 1. The case s = 1 follows from Lemma 4.4.
Therefore, we fix 1 ≤ s0 < m − i and suppose, for all 1 ≤ s ≤ s0, that f(z) is congruent
modulo `i+s to a form in S`s−1(`−1). Since v`(f) = i, we note for all such s that `−if(z) is
congruent modulo `s to a form in S`s−1(`−1). In particular, with s = s0, we obtain fs0(z) ∈
S`s0−1(`−1) with

(5.4) `−if(z) ≡ `−ifs0(z) (mod `s0).

Next, we observe that

(5.5)
fs0(z)

`i
· E`−1(z)`

s0−1(`−1) ∈ S`s0 (`−1).

From Proposition 2.5 and (5.4), we see, for all 1 ≤ s ≤ s0 that

(5.6)
fs0(z)

`i
· E`−1(z)`

s0−1(`−1) ≡ fs0(z)

`i
≡ f(z)

`i
(mod `s).

Noting the induction hypothesis on `−if(z), (5.5), and (5.6), we conclude for all 1 ≤ s ≤ s0+1

that `−ifs0(z)E`−1(z)`
s0−1(`−1) is congruent modulo `s to a form in S`s−1(`−1). We also note by

Proposition 2.3 (2), that `−ifs0(z)E`−1(z)`
s0−1(`−1) | U(`) is congruent modulo `s to a form in

the same space. Hence, we may apply Lemma 3.1 and (1.8) to show, for all 1 ≤ s ≤ s0 + 1
and for all t ≥ 1, that there exists Fs,t(z) ∈ S`s−1(`−1) such that

(5.7)
fs0(z)

`i
· E`−1(z)`

s0−1(`−1) | X(`)t ≡ Fs,t(z) (mod `s).
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Since f(z) ∈ S∗, Lemma 4.1 implies that there exists n ≥ 1 with f(z) | X(`)n ≡ f(z)
(mod `m). We use i+ s0 + 1 ≤ m and v`(f(z)) = i to conclude that

(5.8)
f(z)

`i
| X(`)n ≡ f(z)

`i
(mod `s0+1).

For convenience, we set

(5.9) f ∗(z) := f(z)− fs0(z)E`−1(z)`
s0−1(`−1).

Multiplying by `i in (5.6) gives

f ∗(z) ≡ 0 (mod `i+s0).

Therefore, we consider the quantity

k = w`

(
f ∗

`i+s0

)
.

If k = −∞, then (5.5) and (5.9) imply that f(z) is congruent (mod `i+s0+1) to a form in
S`s0 (`−1). Hence, we suppose that k 6= −∞; we have k ≡ 0 (mod `− 1). With n as in (5.8),
we apply Claim 4.6 to find, for r ≥ 1 large enough, that

(5.10) w`

(
f ∗

`i+s0
| X(`)nr

)
≤ `s0(`− 1).

We first suppose that this filtration is not −∞; it must therefore be j(` − 1) for some
0 ≤ j ≤ `s0 . Using Proposition 2.5, It follows that there exists Gr(z) ∈ S`s0 (`−1) for which

(5.11)
f ∗(z)

`i+s0
| X(`)nr · E`−1(z)`

s0−j ≡ Gr(z) (mod `).

Starting from

f(z) = fs0(z) · E`−1(z)`
s0−1(`−1) + f ∗(z),

we apply X(`)nr and (5.8) (multiplying by `i) to obtain

(5.12) f(z) ≡ fs0(z) · E`−1(z)`
s0−1(`−1) | X(`)nr + f ∗(z) | X(`)nr (mod `i+s0+1).

In (5.7), we let t = nr and s = s0 + 1, and we multiply by `i to show that the first summand
on the right side of (5.12) is congruent modulo `i+s0+1 to a form in S`s0 (`−1). Similarly, we
multiply by `i+s0 in (5.11) to deduce that the second summand on the right side of (5.12)
is congruent modulo `i+s0+1 to a form in S`s0 (`−1). We now see that the left side of (5.12)
must also be in this space modulo `i+s0+1. Hence, the lemma is proved when (5.10) is not
−∞. When (5.10) has value −∞, we deduce that f ∗(z) | X(`)nr ≡ 0 (mod `i+s0+1). We
insert this into (5.12) and note again that the first summand on the right side of (5.12) is in
S`s0 (`−1) modulo `i+s0+1 to obtain the desired result. �

Remarks.

(1) A modification of the proof using Proposition 2.5 shows that the conclusion continues
to hold under the weaker hypothesis that f(z) ≡ 0 (mod `i) (i.e., v`(f) ≥ i).

(2) The lemma also continues to hold for f(z) ∈ S∗ | U(`). As discussed in the proof
of Theorem 4.3, S∗ | U(`) is the largest Z/`mZ-submodule of S`m−1(`−1) on which
Y (`) is an isomorphism modulo `m. Further, we note that Ωeven

` (m) ⊆ S∗ | U(`) and
Ωodd
` (m) ⊆ S∗.

We next prove the m = 1 case of Theorem 5.1.
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Lemma 5.4. Let ` ≥ 5 be prime, and let d` be as in (5.1). Then we have

L`(2d` + 1; z) ∈ Ωodd
` (1).

Proof. We apply Lemma 5.2 with

λ(z) = L`(0; z) = 1 ∈ Λeven
` (0, 1), f(z) = E`−1(z) ∈M`−1 ∩ Z(`)[[q]];

hence, we have i = 0. In particular, Lemma 5.2 yields µ(z) ∈ Ωodd
` (m) with

L`(2d` + 1; z) = L`(0; z) | D(`) | X(`)d` ≡ µ(z) (mod `).

Since reduction modulo ` maps Ωodd
` (m)→ Ωodd

` (1), the lemma follows. �

The final preliminary lemma plays a central role in the proof of Theorem 5.1 for m ≥ 2.

Lemma 5.5. Suppose that ` ≥ 5 is prime, m ≥ 2, 1 ≤ s ≤ m − 1, and d` is as in (5.1).
Then there exists ν(2(d` + 1)s; z) ∈ Ωeven

` (m) and τ(2(d` + 1)s; z) ∈ S`m−s−1(`−1) ∩ Z(`)[[q]]
with the following properties.

(1) We have τ(2(d` + 1)s; z) ≡ 0 (mod `s).
(2) For all k with s + 1 ≤ k ≤ m, the form τ(2(d` + 1)s; z) is congruent modulo `k to a

form in S`k−s−1(`−1).
(3) We have L`(2(d` + 1)s; z) ≡ ν(2(d` + 1)s; z) + τ(2(d` + 1)s; z) (mod `m).

Proof. The proof proceeds by induction on s. In view of the proof of Lemma 5.4, we see that
there exists µ(z) ∈ Ωodd

` (m) with

(5.13) L`(2d` + 1; z) ≡ µ(z) (mod `).

Since D(`) : Ωeven
` (m)→ Ωodd

` (m) is an isomorphism, there exists ν(2d`; z) ∈ Ωeven
` (m) with

(5.14) ν(2d`; z) | D(`) ≡ µ(z) (mod `m).

We claim that the form L`(2d`; z) − ν(2d`; z) satisfies the hypotheses of Lemma 3.6. We
observe that ν(2d`; z) ∈ Ωeven

` (m) implies, for all 1 ≤ k ≤ m, that ν(2d`; z) (mod `k) ∈
Ωeven
` (k) ⊆ M`k−1(`−1). Similarly, Corollary 3.5 implies that L`(2d`; z) is congruent modulo

`k to a form in M`k−1(`−1). Therefore, there exists α(k; z) ∈M`k−1(`−1) ∩ Z[[q]] with

(5.15) L`(2d`; z)− ν(2d`; z) ≡ α(k; z) (mod `k).

Moreover, (1.7), (5.13), and (5.14) imply that

(5.16) (L`(2d`; z)− ν(2d`; z)) | D(`) ≡ L`(2d` + 1; z)− ν(2d`; z) | D(`) ≡ 0 (mod `).

Hence, our claim holds. Applying Lemma 3.6 and using (5.15) gives, for 2 ≤ k ≤ m, a form
h(k; z) ∈ S`k−2(`−1) ∩ Z[[q]] with

(5.17) (L`(2d`; z)− ν(2d`; z)) | Y (`) ≡ α(k; z) | Y (`) ≡ h(k; z) (mod `k).

We next claim that τ(2(d` + 1); z) := h(m; z) ∈ S`m−2(`−1) satisfies the conclusion of the
present lemma for s = 1. For 2 ≤ k ≤ m, (5.17) implies that h(m; z) ≡ h(k; z) (mod `k),
and (1.9), (5.16), and (5.17) imply that h(m; z) ≡ 0 (mod `). Now, since Y (`) : Ωeven

` (m)→
Ωeven
` (m), we have

(5.18) ν(2(d` + 1); z) := ν(2d`; z) | Y (`) ∈ Ωeven
` (m).



30 MATTHEW BOYLAN AND JOHN J. WEBB

It follows from (1.10), (1.9), (5.17), and (5.18) that

L`(2(d` + 1); z) = L`(2d`; z) | Y (`) = ν(2d`; z) | Y (`) + (L`(2d`; z)− ν(2d`; z)) | Y (`)

≡ ν(2(d` + 1); z) + h(m; z) ≡ ν(2(d` + 1)s; z) + τ(2(d` + 1); z) (mod `m).

We now suppose, for fixed 1 ≤ s ≤ m − 2, that there exists ν(2(d` + 1)s; z) and
τ(2(d`+1)s; z) satisfying the conclusion of the lemma. Condition (1) implies that v`(τ(2(d`+
1)s; z)) ≥ s; we may assume that

(5.19) v`(τ(2(d` + 1)s; z)) = s.

We first show that τ(2(d` + 1)s; z) satisfies the hypotheses of Lemma 5.2. The hypothesis on
ν(2(d`+1)s; z), the definition of b`(m), and the nesting property of the modules Λeven

` (2(d`+
1)s;m) give

(5.20) ν(2(d` + 1)s; z) ∈ Ωeven
` (m) = Λeven

` (b`(m),m) ⊆ Λeven
` (2(d` + 1)s,m).

From condition (3), we see that τ(2(d`+1)s; z) ≡ L`(2(d`+1)s; z)−ν(2(d`+1)s; z) (mod `m).
In view of (5.20), it follows that τ(2(d` + 1)s; z) ∈ Λeven

` (2(d` + 1)s,m). With k = s + 1 in
condition (2), we find that τ(2(d` + 1)s; z) is congruent modulo `s+1 to a form in S`−1. We
may now apply Lemma 5.2 to τ(2(d` + 1)s; z) to produce γ(s; z) ∈ Ωodd

` (m) with

(5.21) τ(2(d` + 1)s; z) | D(`) | X(`)d` ≡ γ(s; z) (mod `s+1).

From (5.19), we find that

(5.22) γ(s; z) ≡ 0 (mod `s).

Since D(`) : Ωeven
` (m)→ Ωodd

` (m) is an isomorphism, there exists β(s; z) ∈ Ωeven
` (m) with

(5.23) β(s; z) | D(`) ≡ γ(s; z) (mod `m).

Noting (5.22) and that s < m, we also have β(s; z) | D(`) ≡ 0 (mod `s). Reduction modulo
`s surjects onto Ωeven

` (s), and D(`) is an isomorphism on Ωeven
` (s). Hence, we deduce that

(5.24) β(s; z) ≡ 0 (mod `s).

Using (1.8) and (1.9), we observe that

(5.25) τ(2(d` + 1)s; z) | D(`) | X(`)d` = τ(2(d` + 1)s; z) | Y (`)d` | D(`).

Since s+ 1 < m, it follows from (5.21), (5.23), and (5.25) that

(5.26) τ(2(d` + 1)s; z) | Y (`)d` | D(`) ≡ β(s; z) | D(`) (mod `s+1).

We next show that

(5.27) Ξ(z) :=
τ(2(d` + 1)s; z) | Y (`)d` − β(s; z)

`s

satisfies the hypotheses of Lemma 3.6. Dividing by `s in (5.26) gives

(5.28) Ξ(z) | D(`) =
τ(2(d` + 1)s; z) | Y (`)d` − β(s; z)

`s
| D(`) ≡ 0 (mod `).

Condition (2) and (5.19) imply, for all s + 1 ≤ k ≤ m, that `−sτ(2(d` + 1)s; z) is congruent
modulo `k−s to a form in S`k−s−1(`−1). We use Proposition 2.3 and Lemma 3.1 (replacing k

with k − s and n with m− s) to show that `−sτ(2(d` + 1)s; z) | Y (`)d` remains in the space
S`k−s−1(`−1) ∩ Z(`)[[q]] with coefficients reduced modulo `k−s. In view of (5.24) and the fact
that β(s; z) ∈ Ωeven

` (m), we apply Lemma 5.3 and the remarks following it to `−sβ(s; z) to
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show that the same conclusion holds for this form. From (5.27) we therefore conclude, for
all s+1 ≤ k ≤ m, that Ξ(z) modulo `k−s is congruent to a form in S`k−s−1(`−1). We may now
apply Lemma 3.6 (with j = k − s and n = m− s) to Ξ(z) to obtain, for all s+ 2 ≤ k ≤ m,
forms f(k; z) ∈ S`k−s−2(`−1) with

(5.29) Ξ(z) | Y (`) ≡ f(k; z) (mod `k−s).

To conclude, we show that

τ(2(d` + 1)(s+ 1); z) := `sf(m; z) ∈ S`m−s−2(`−1),(5.30)

ν(2(d` + 1)(s+ 1); z) := (ν(2(d` + 1)s; z) | Y (`)d` + β(s; z)) | Y (`)(5.31)

satisfy the conditions of the lemma. From (5.27), (5.29), and (5.30), we observe that

(5.32) τ(2(d` + 1)(s+ 1); z) ≡
(
τ(2(d` + 1)s; z) | Y (`)d` − β(s; z)

)
| Y (`) (mod `m).

We first note that since Y (`) maps Ωeven
` (m) to itself and since ν(2(d` + 1)s; z) and β(s; z) ∈

Ωeven
` (m), we have ν(2(d` + 1)(s+ 1); z) ∈ Ωeven

` (m). To verify condition (1), we multiply by
`s and apply U(`) in (5.28) to obtain `s · Ξ(z) | Y (`) ≡ 0 (mod `s+1). Similarly, in (5.29),
we multiply by `s and set k = m. Noting that s + 1 < m and using (5.30), we find that
`s · Ξ(z) | Y (`) ≡ τ(2(d` + 1)(s+ 1); z) (mod `s+1). It follows that τ(2(d` + 1)(s+ 1); z) ≡ 0
(mod `s+1), as desired. From (5.29) and (5.30), we find, for all s + 2 ≤ k ≤ m, that
τ(2(d` + 1)(s+ 1); z) is congruent modulo `k to a form in S`k−s−2(`−1), namely `sf(k; z). This
is condition (2) of the lemma. Lastly, we verify condition (3). By the induction hypothesis,
(1.10), (1.9), (5.31), and (5.32), we have

L`(2(d` + 1)(s+ 1); z) ≡ L`(2(d` + 1)s; z) | Y (`)d`+1

≡ (ν(2(d` + 1)s; z) + τ(2(d` + 1)s; z)) | Y (`)d`+1

≡ (ν(2(d` + 1)s; z) | Y (`)d` + β(s; z)) | Y (`)

+ (τ(2(d` + 1)s; z) | Y (`)d` − β(s; z)) | Y (`)

≡ ν(2(d` + 1)(s+ 1); z) + τ(2(d` + 1)(s+ 1); z) (mod `m).

The lemma is proved. �

5.2. Proof of Theorem 5.1. Let ` ≥ 5 be prime. To prove Theorem 5.1, it suffices to show
for all m ≥ 1 that

(5.33) L`(2(d` + 1)m− 1; z) ∈ Ωodd
` (m).

The m = 1 case is Lemma 5.4. We now use Lemmas 5.2 and 5.5 to prove the theorem for
m ≥ 2. We let s = m − 1 in Lemma 5.5 to obtain ν(2(d` + 1)(m − 1); z) ∈ Ωeven

` (m) and
τ(2(d` + 1)(m − 1); z) ∈ S`−1 ∩ Z[[q]] satisfying conditions (1), (2), and (3) of the lemma.
Condition (1) states that τ(2(d`+1)(m−1); z) ≡ 0 (mod `m−1). If τ(2(d`+1)(m−1); z) ≡ 0
(mod `m), then condition (3) implies that L`(2(d` + 1)(m − 1); z) ≡ ν(2(d` + 1)(m − 1); z)
(mod `m). It follows that L`(2(d` + 1)(m− 1); z) ∈ Ωeven

` (m). Basic properties of X(`) and
D(`) given in the beginning of Section 4.1 imply that

(5.34) D(`)X(`)d` : Ωeven
` (m)→ Ωodd

` (m)

Hence, we find that L`(2(d`+1)m−1; z) = L`(2(d`+1)(m−1); z) | D(`) | X(`)d` ∈ Ωodd
` (m).

Therefore, we assume that

(5.35) v`(τ(2(d` + 1)(m− 1); z)) = m− 1.
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In this case, condition (3) gives

(5.36) L`(2(d` + 1)(m− 1); z) ≡ ν(2(d` + 1)(m− 1); z) + τ(2(d` + 1)(m− 1); z) (mod `m).

It follows that τ(2(d` + 1)(m − 1); z) ∈ Λeven
` (2(d` + 1)(m − 1),m). Moreover, (5.35) and

the fact that τ(2(d` + 1)(m − 1); z) ∈ S`−1 imply that this form satisfies the hypotheses
of Lemma 5.2. Using this lemma and the isomorphism (5.34), we deduce the existence of
β(z) ∈ Ωeven

` (m) with

(5.37) τ(2(d` + 1)(m− 1); z) | D(`) | X(`)d` ≡ β(z) | D(`) | X(`)d` (mod `m).

We now rewrite (5.36) as

L`(2(d` + 1)(m− 1); z) ≡ ν(2(d` + 1)(m− 1); z) + β(z)

+ (τ(2(d` + 1)(m− 1); z)− β(z)) (mod `m).

From (5.37), we find that

L`(2(d` + 1)m− 1; z) = L`(2(d` + 1)(m− 1); z) | D(`) | X(`)d`

≡ (ν(2(d` + 1)(m− 1); z) + β(z)) | D(`) | X(`)d`

+ (τ(2(d` + 1)(m− 1); z)− β(z)) | D(`) | X(`)d`

≡ (ν(2(d` + 1)(m− 1); z) + β(z)) | D(`) | X(`)d` (mod `m).

Using (5.34) again we conclude that L`(2(d` + 1)m− 1; z) ∈ Ωodd
` (m), completing the proof

of the theorem. �

6. Calculations: examples and comments.

6.1. Examples. In this section, we give selected examples to illustrate Theorem 1.2 and
Corollary 1.3. In the course of our investigation, we calculated bases for the spaces Ωodd

` (m)
and Ωeven

` (m) in the following cases:

• m = 1, primes 13 ≤ ` < 1300,
• m = 2, primes 13 ≤ ` ≤ 89,
• m = 3, primes 13 ≤ ` ≤ 29,
• m = 4, ` = 13.

We first give examples of Theorem 1.2. We recall from (1.13) that r`(m) is the rank of
Ωodd
` (m) as a Z/`mZ-module and that R` = b `+12

24
c is the upper bound for this rank.

Example 1. Let ` = 29. We find that r29(1) = 1 = R29. By the third remark after
Theorem 1.1, we see that r29(m) = 1 for all m ≥ 1. We compute b29(1) = 1, b29(2) = 3, and
b29(3) = 5. We use this data and explicit computation to verify, for all n ≥ 0, that

p(29n+ 23) ≡ 10p(293n+ 806) (mod 29),

p(293n+ 806) ≡ 329p(295n+ 19308) (mod 292),

p(295n+ 19308) ≡ 14706p(297n+ 13656152078) (mod 293).

Example 2. Let ` = 89. We have r89(1) = 4 = R89; therefore, we have r89(m) = 4 for all
m ≥ 1. We also compute b89(1) = 1 and b89(2) = 3. Our computations yield the following
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congruences for all n ≥ 0:

p(89n+ 26) ≡ 87p(893n+ 7591) + 62p(895n+ 1628684006)

+14p(897n+ 12900806011196) + 78p(899n+ 102 . . . 186) (mod 89),

p(893n+ 7591) ≡ 1244p(895n+ 1628684006) + 5135p(897n+ 12900806011196)

+1082p(899n+ 102 . . . 186) + 968p(8911n+ 809 . . . 976) (mod 892).

Example 3. Let ` = 1297. We calculate r1297(1) = 54. Hence, for all m ≥ 1, we have
r1297(m) = 54. We also have b1297(1) = 1. For all n ≥ 0, we find that

p(1297n+ 1243) ≡1171p(12973n+2090915695)+207p(12975n+3517357200300163)+

...

+1242p(1297107n+116...975)+1108p(1297109n+195...683) (mod 1297).

For all primes ` ≤ 1297 with the exception of ` = 607, our calculations show that r`(1) = R`,
and hence, that r`(m) = R` for all m ≥ 1. For ` = 607, we find that r607(m) = R607 − 1 for
all m ≥ 1.

We next give examples of Corollary 1.3.

Example 1. Let ` = 37. We find that c37 = 36, and we discover, for all n ≥ 0, that

p(37n+ 17) ≡ p(3773n+ 138...7757) (mod 37).

Example 2. Let ` = 137. Our computations give c137 = 177423288. Thus, the following
congruence holds for all n ≥ 0:

p(137n+ 40) ≡ p(137354846577n+ 531 . . . 1080) (mod 137).

6.2. Comments on computation. Let ` ≥ 13 be prime, and let m ≥ 1. We describe how
to calculate a relation modulo `m between the r`(m) + 1 functions {L`(b`(m); z), L`(b`(m) +
2; z), . . . , L`(b`(m) + 2r`(m); z)} ⊆ Ωodd

` (m). By Corollary 3.5, this calculation takes place
in the Z/`mZ-module S`m−1(`−1) ∩ Z(`)[[q]] with coefficients reduced modulo `m.

Let

t`,m =

⌊
`m−1(`− 1)

12

⌋
.

We require the rank of S`m−1(`−1), given by

s`,m :=

{
t`,m − 1 if `m−1(`− 1) ≡ 2 (mod 12),

t`,m otherwise,

and we require the forms

F`,m(z) :=



1 if `m−1(`− 1) ≡ 0 (mod 12),

E4(z)2E6(z) if `m−1(`− 1) ≡ 2 (mod 12),

E4(z) if `m−1(`− 1) ≡ 4 (mod 12),

E6(z) if `m−1(`− 1) ≡ 6 (mod 12),

E4(z)2 if `m−1(`− 1) ≡ 8 (mod 12),

E4(z)E6(z) if `m−1(`− 1) ≡ 10 (mod 12).
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In this notation, a standard upper-triangular basis for the space S`m−1(`−1) is{
∆(z)kE4(z)3(s`,m−k)F`,m(z) = qk + · · ·

}s`,m

k=1
.

Hence, to distinguish a form in S`m−1(`−1) it suffices to compute its coefficients to order
O(qt`,m).

We seek to efficiently calculate Φ`(z) = η(`2z)/η(z) (mod `m). When m = 1, we use
(2.10). For m ≥ 2, we use the following proposition.

Proposition 6.1. Let m ≥ 2. Then we have

(6.1) Φ`(z) ≡ η(`2z)η(z)2`m−1

η(`m+1z)2`m−1

m∏
k=1

η(`kz)2`m−2`m−1

(mod `m).

Proof. By Proposition 2.5, for all k ≥ 0, we have A`(`
kz)2`m−1 ≡ 1 (mod `m). Thus, using

definitions (1.5) and (2.8), we have

Φ`(z) ≡ Φ`(z)
m∏
k=0

A`(`
kz)2`m−1 ≡ η(`2z)

η(z)

m∏
k=0

η(`kz)2`m

η(`k+1z)2`m−1 (mod `m).

Simplification by grouping factors yields the proposition. �

We note that(
q−

`m+1

24 η(`m+1z)
)2`m−1

=
∞∏
n=1

(1− q`m+1n)2`m−1

= 1 +O(q`
m+1

)

and that t`,m < `m+1. Therefore, to compute the right side of (6.1) to order O(qt`,m) we
may disregard the contribution from the denominator. Rather, to compute the right side to
suitable order, it suffices to compute

q−
`2m

12 η(`2z)η(z)2`m−1

m∏
k=1

η(`kz)2`m−2`m−1

= q
`2−1
24

∞∏
n=1

(1−qn)2`m−1(1−q`2n)
m∏
k=1

(1−q`kn)2`m−2`m−1

.

For this purpose, we use Euler’s Pentagonal Number Theorem:
∞∏
n=1

(1− qn) = 1 +
∞∑
k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)
.

We now turn to computation of r`(m) and b`(m). To start, we compute

{L`(2m− 1; z), L`(2m+ 1; z), . . . , L`(2(m+R` − 1)− 1; z)} (mod `m).

A collection f1, . . . , fn ∈ Z(`)[[q]] is linearly independent over Z(`)[[q]] if and only if the
relation a1f1 + · · · + anfn ≡ 0 (mod `m) implies, for all 1 ≤ i ≤ n, that ai ≡ 0 (mod `m);
if m ≥ 2, we further require that not all ai ≡ 0 (mod `). Next, we determine the largest
0 ≤ s ≤ R` − 1 for which

I`,m,s := {L`(2m− 1; z), L`(2m+ 1; z), . . . , L`(2(m+ s− 1)− 1; z)} (mod `m)

is linearly independent, and we set J`,m,s := SpanZ/`mZ(I`,m,s). In all calculated examples we
found that s = R` − 1 except for ` = 607, in which case, we computed s = R607 − 2 = 24.

Continuing our search for relations modulo `m, we first suppose that

(6.2) L`(2(m+ s)− 1; z) ∈ J`,m,s.
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Then there exists c0, . . . , cs−1 ∈ Z for which

L`(2(m+ s)− 1; z) ≡ c0L`(2m− 1; z) + . . .+ cs−1L`(2(m+ s− 1)− 1; z) (mod `m).

As X(`) is cyclic on J`,m,s, its matrix representation in the basis I`,m,s is

[X(`)] =


0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cs−1

 .

We also suppose that

(6.3) ` - c0.

Then X(`) is an isomorphism on J`,m,s since c0 ∈ (Z/`mZ)× is the determinant of the matrix
[X(`)]. We conclude that

(6.4) d` = 0, b`(m) ≤ 2m− 1, r`(m) = s, Ωodd
` (m) = J`,m,s.

Conditions (6.2) and (6.3) were met in all calculated examples.
It remains to compute the precise value of b`(m). We recall, for all b ≥ b`(m), that

SpanZ/`mZ {L`(b; z), L`(b+ 2; z), . . . , L`(b+ 2(r`(m)− 1); z)} = Ωodd
` (m).

Hence, there exists c0, . . . , cr`(m)−1 ∈ Z such that

(6.5) L`(b+ 2r`; z) ≡ c0L`(b; z) + . . .+ cr`−1L`(b+ 2(r`(m)− 1); z) (mod `m).

Moreover, the coefficients are independent of b. Therefore, we seek b minimal for which a
congruence of type (6.5) holds. We use (6.4) to expedite this search.

On the other hand, if either of (6.2) or (6.3) fail to hold, then we have d` > 0. In this
setting, X(`) on S`−1 has an eigenvalue λ ≡ 0 (mod `). The corresponding eigenspace has
dimension d`+1 and is not contained in S (as in (5.1)). We conclude that r`(m) ≤ R`−d` <
R`. Using these facts, an analysis similar to that for when d` = 0 enables calculation of
r`(m) and b`(m).
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