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Abstract. Let k ∈ {10, 15, 20}, and let bk(n) denote the number
k-regular partitions of n. We prove for half of all primes p and
any t ≥ 1 that there exists p − 1 arithmetic progressions modulo
p2t such that bk(n) is a multiple of 5 for each n in one of these
progressions.

1. Introduction and statement of results

For a natural number n, a partition of n is a non-increasing sequence
of natural numbers, called parts, whose sum is n. Let k > 1 be an
integer. We say that a partition is k-regular if none of its parts are
divisible by k. We define bk(n) to be the number of k-regular partitions
of n, and let bk(0) := 1 and bk(α) := 0 if α 6∈ N ∪ {0}.

Euler made many of the most important contributions to the study of
partitions. In particular, Euler discovered the generating functions for
many types of partition functions. For k-regular partitions, he showed

(1.1)
∞∑
n=0

bk(n)qn =
∞∏
m=1

1− qkm

1− qm
.

For k = 2, Euler used this generating function to prove that the number
of 2-regular partitions of n, in other words partitions of n into odd
parts, is equal to the number of partitions of n where each part is
distinct. Over the past 100 years, there has been significant interest in
infinite families of congruences for partition functions beginning with
Ramanujan’s congruences for the unrestricted partition function p(n).
For all non-negatve integers n we have

p(5n+ 4) ≡ 0 (mod 5) ,

p(7n+ 5) ≡ 0 (mod 7) , and

p(11n+ 6) ≡ 0 (mod 11) .
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Work of Ahlgren and Ono [1], [3], [10] shows that for any moduli m
coprime to 6 that there are infinitely many pairs (A,B), such that

p(An+B) ≡ 0 (mod m) ;

however, Ahlgren and Boylan [2] proved that Ramanujan’s congruences
are very special in the sense that the only pairs (`, δ) where ` is prime
and 0 ≤ δ ≤ `− 1 such that for all non-negative integers n,

p(`n+ δ) ≡ 0 (mod `)

are precisely (5, 4), (7, 5), and (11, 6).
There has also been significant interest in the arithmetic of regular

partition functions. Gordon and Ono [8] proved that for any prime `,
the density of values of b`(n) divisible by `m for any m ≥ 1 is 1 as n
goes to infinity. Precise conditions for the values n when ` divides b`(n)
were proved by Lovejoy and Penniston [9] for ` = 3, and Dandurand
and Penniston [5] for ` ∈ {5, 7, 11}. Congruences for regular partitions
modulo 2 and 3 were proven in [4], [6], [7], and [13].

In this paper we prove families of congruences modulo 5 for the k-
regular partition functions when k ∈ {10, 15, 20}.

Theorem 1.1. Let n ≥ 1, p be an odd prime, and λ an integer with
p - λ.

• If p ≡ 5 or 7 mod 8, then for all non-negative integers t we have

b10

(
p2nt+ p2n−1λ+ 3

(
p2n − 1

8

))
≡ 0 (mod 5) .

• If p ≡ 5 mod 6, then for all non-negative integers t we have

b15

(
p2nt+ p2n−1λ+ 7

(
p2n − 1

12

))
≡ b20

(
p2nt+ p2n−1λ+ 19

(
p2n − 1

24

))
≡ 0 (mod 5) .

Example. Let p = 23. By Theorem 1.1, for each k ∈ {10, 15, 20} and
any n ≥ 1, there are 22 separate arithmetic progressions modulo 232n

on which bk(n) vanishes modulo 5. To be precise, for all t ≥ 0 and all
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integers λ with 23 - λ, we have

b10

(
232nt +232n−1λ+ 3

(
232n − 1

8

))
≡ b15

(
232nt+ 232n−1λ+ 7

(
232n − 1

12

))
≡ b20

(
232nt+ 232n−1λ+ 19

(
232n − 1

24

))
≡ 0 (mod 5) .

As with most of the preceding work on congruences for partitions,
our proof relies on the theory of modular forms. The generating func-
tions for each of these regular partition functions are congruent to
eta-quotients that are weight 2 cusp forms. Whereas Dandurand and
Penniston in [5] use the theory of complex multiplication to prove their
divisibility results, our approach is a bit more elementary. While each
of these cusp forms can be expressed as a sum of eigenforms, it turns
out that each of these eigenforms is congruent to a sum of eta-quotients.
These eta-quotients indicate infinite families of Hecke operators which
annihilate the eigenforms modulo 5.

2. Connection to modular forms

For any complex number z in the upper-half plane, we let q := e2πiz.
For integers κ ≥ 0, N ≥ 1, and χ a Dirichlet character modulo N , we
let Sκ(Γ0(N), χ) denote the space of weight κ holomorphic cusp forms
on Γ0(N) with Nebentypus χ. Let p be prime and g(z) :=

∑
c(n)qn ∈

Sκ(Γ0(N), χ). We define the p-th weight κ Hecke operator by

g(z) | Tκ,p,χ :=
∞∑
n=1

(c(pn) + pκ−1χ(p)c(n/p))qn ,

where c(n/p) := 0 if p - n. We note that Tκ,p,χ is an endomorphism of
Sκ(Γ0(N), χ).

We require Dedekind’s eta-function, defined as

(2.1) η(z) := q1/24
∞∏
n=1

(1− qn) .

Fix an integer k > 1 which is not a power of 2 and `k, an odd prime

which divides k. Let α(k) :=
24

gcd(k − 1, 24)
. Define

Fk(z) :=
η
(
kα(k)z
`k

)`k
η(α(k)z)

.
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Let β(k) :=
k − 1

gcd(k − 1, 24)
. Using (1.1), (2.1), and Fermat’s little

theorem, it is a simple exercise to show Fk(z) ∈ Z[[q]] and

(2.2)
∞∑
n=0

bk(n)qα(k)n+β(k) ≡ Fk(z) (mod `k) ,

where we say
∑
c(n)qn ≡

∑
d(n)qn (mod `) if c(n) ≡ d(n) (mod `)

for all n.
In the following two lemmas we show how Fk(z) being annihilated by

a Hecke operator modulo `k translates into congruences for bk(n). In
Lemma 2.1, we obtain an important relation that arises straight from
the definition of the Hecke operator.

Lemma 2.1. Let p ≥ 5 be a prime such that Fk(z)|Tκ,p,χ ≡ 0 (mod `k),
and let 1 ≤ γ ≤ α(k) satisfy pγ ≡ β(k) (mod α(k)). Then for any
non-negative integer j we have

bk

(
pj +

γp− β(k)

α(k)

)
≡ −pκ−1χ(p)bk

(
j − β(k)p−γ

α(k)

p

)
(mod `k) .

Remark. Since α(k)|24, we have (β(k)p− γ)/α(k) ∈ Z.

Proof. Let Fk(z) :=
∑∞

n=1 c(n)qn. Using (2.2) we see

(2.3) bk

(
n− β(k)

α(k)

)
≡ c(n) (mod `k) .

By our assumption, Fk(z)|Tκ,p,χ ≡ 0 (mod `k), the definition of the
Hecke operator implies for all n that

c (pn) ≡
(
−pκ−1χ(p)

)
c

(
n

p

)
(mod `k) .

Note that if n
p
/∈ Z then the righthand side above is 0.

Using (2.3) this means that:

(2.4) bk

(
pn− β(k)

α(k)

)
≡
(
−pκ−1χ(p)

)
bk

(
n
p
− β(k)

α(k)

)
(mod `k) .

This congruence contains non-trivial information only if on at least
one side of the congruence an integer is being plugged into bk(n). Thus

we identify for which n we have pn−β(k)
α(k)

∈ Z. By definition of γ, we
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have that pn−β(k)
α(k)

∈ Z if and only if n ≡ γ (mod α(k)). Thus for any

nonnegative integer j, we write n = α(k)j + γ and use (2.4) to see

bk

(
p (α(k)j + γ)− β(k)

α(k)

)
≡
(
−pκ−1χ(p)

)
bk

(
(α(k)j+γ)

p
− β(k)

α(k)

)
(mod `k) ,

which simplifies to

bk

(
pj +

γp− β(k)

α(k)

)
≡
(
−pκ−1χ(p)

)
bk

(
j − β(k)p−γ

α(k)

p

)
(mod `k) . �

The next lemma shows how Lemma 2.1 translates into p−1 separate
congruences modulo p2n such that bk(n) vanishes modulo `k.

Lemma 2.2. Let p ≥ 5 be a prime such that Fk(z)|Tκ,p,χ ≡ 0 (mod `k),
and let t be a non-negative integer. Then the following statements are
true.

(1) For all n ≥ 1

bk

(
p2nt+ β(k)

(
p2n − 1

α(k)

))
≡
(
−pκ−1χ(p)

)n
bk(t) (mod `k) .

(2) If λ ≥ γ − β(k)p

α(k)
is an integer with p - λ, and n ≥ 1

bk

(
p2nt+ p2n−1λ+ β(k)

(
p2n − 1

α(k)

))
≡ 0 (mod `k) .

Remark. Statement (2) actually holds for all integers λ such that
p - λ. If λ is sufficiently negative such that p2nt+ p2n−1λ+ β(k)(p2n −
1)/α(k) < 0, then the congruence trivially holds since there are no
partitions of a negative number. On the other hand, if p2nt+ p2n−1λ+

β(k)(p2n − 1)/α(k) > 0, then we could choose t′ ≥ 0 and λ′ ≥ γ − β(k)p

α(k)
such that p2nt+ p2n−1λ = p2nt′ + p2n−1λ′.
Proof of Lemma 2.2. We are going to prove this using induction on

n. Suppose that n = 1. For any integer λ satisfying λ ≥ γ − β(k)p

α(k)
,

it follows that pt + λ +
β(k)p− γ
α(k)

is a non-negative integer. We use
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Lemma 2.1 replacing pt+ λ+ β(k)p−γ
α(k)

in for j to see

bk

(
p

(
pt+

β(k)p− γ
α(k)

+ λ

)
+
γp− β(k)

α(k)

)
≡

(
−pκ−1χ(p)

)
bk


(
pt+ β(k)p−γ

α(k)
+ λ
)
− β(k)p−γ

α(k)

p

 (mod `k) .

Simplifying both sides, we get
(2.5)

bk

(
p2t+ pλ+ β(k)

(
p2 − 1

α(k)

))
≡
(
−pκ−1χ(p)

)
bk

(
t+

λ

p

)
(mod `k) .

We note that if λ = 0 then (2.5) is equivalent to statement (1) for
n = 1 of the lemma. If p - λ then the righthand side of (2.5) is 0 by
definition, which establishes statement (2) for n = 1 of the lemma.

Next we prove the induction step. Assume the statements of the

lemma are true for all 1 ≤ m ≤ n. For any integer λ ≥ γ − β(k)p

α(k)
, we

note that

p2n+2t+p2n+1λ+ β(k)

(
p2n+2 − 1

α(k)

)
= p2n+2t+ p2n+1λ+ β(k)

(
p2n+2 − p2

α(k)
+
p2 − 1

α(k)

)
= p2

(
p2nt+ p2n−1λ+ β(k)

(
p2n − 1

α(k)

))
+ β(k)

(
p2 − 1

α(k)

)
.

By our assumption with m = 1 and replacing t with p2nt + p2n−1λ +
β(k)(p2n − 1)/α(k), we have

bk

(
p2
(
p2nt+ p2n−1λ+ β(k)

(
p2n − 1

α(k)

))
+ β(k)

(
p2 − 1

α(k)

))
≡
(
−pκ−1χ(p)

)
bk

(
p2nt+ p2n−1λ+ β(k)

(
p2n − 1

α(k)

))
(mod `k) .

If p - λ by the induction hypothesis with m = n the righthand side is
congruent to 0, which establishes the statement (2) of the lemma. On
the other hand, if λ = 0 by the induction hypothesis with m = n, we
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have

bk
(
p2n+2t+ β(k)

(
p2n+2 − 1

α(k)

))
≡
(
−pκ−1χ(p)

)
bk

(
p2nt+ β(k)

(
p2n − 1

α(k)

))
≡
(
−pκ−1χ(p)

)n+1
bk(t) (mod `k) ,

which establishes statement (1) of the lemma. �
We emphasize that Lemma 2.2 applies in great generality. For ex-

ample let k = `k = 13. We see that F13(z) = η(2z)12 ∈ S6(Γ0(144), χ0),
where χ0 denotes the trivial character. Since F13(z)|T6,151,χ0 ≡ 0
(mod 13), we have for all n ≥ 1, t ≥ 0, and λ ≥ −75 with 151 - λ
that

b13

(
1512nt+ 1512n−1λ+

1512n − 1

2

)
≡ 0 (mod 13) .

3. Congruences between eigenforms and eta-quotients

In this section we indentify infinite families of Hecke operators which
annihilate Fk(z) mod 5 for k ∈ {10, 15, 20}. Applying Lemma 2.2 to
these families will complete the proof of Theorem 1.1.

For non-zero integers d, let χd denote the Kronecker character χd(n) =(
d
n

)
. Theorems of Gordon, Hughes, Newman, and Ligozat (see, for ex-

ample, [11]) show that

F10(z) =
η(16z)5

η(8z)
∈S2(Γ0(128), χ2) ,

F15(z) =
η(36z)5

η(12z)
∈S2(Γ0(432), χ3) ,

F20(z) =
η(96z)5

η(24z)
∈S2(Γ0(2304), χ0) .

We also require the following powerful theorem of Sturm.

Theorem 3.1 (Sturm, [11]). Suppose that OK is the ring of integers
for a number field K, N ≥ 1, and f(z) =

∑
c(n)qn, g(z) =

∑
d(n)qn

such that f(z), g(z) ∈ Sk(Γ0(N), χ)∩OK [[q]]. Let I ⊆ OK be an ideal.
If for all n ≤ k

12
[SL2(Z) : Γ0(N)] we have

c(n) ≡ d(n) (mod I) ,

then f(z) ≡ g(z) (mod I).
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The value k
12

[SL2(Z) : Γ0(N)] is often called the Sturm bound for
Sk(Γ0(N), χ). We note that

[SL2(Z) : Γ0(N)] = N
∏

` prime, `|N

(
1 +

1

`

)
.

We say that h(z) ∈ Sk(Γ0(N), χ) is a newform if for each prime p
there exists some µp such that h(z) | Tk,p,χ = µph(z), in other words
h(z) is a Hecke eigenform, and h(z) 6∈ Sk(Γ0(N

′), χ) for any N ′ < N .
In S2(Γ0(128), χ2), there exist unique newforms h10(z) =

∑∞
n=1 λ(n)qn

and h10(z) =
∑∞

n=0 λ(n)qn with q-series

h10(z) = q + 2
√
−2 q3 +O(q9), h10(z) = q − 2

√
−2 q3 +O(q9) .

Using Theorem 3.1, we verify that

(3.1) h10(z) ≡ η (8z)5

η (16z)
+ 2
√
−2F10(z) (mod 5)

and

(3.2) h10(z) ≡ η (8z)5

η (16z)
− 2
√
−2F10(z) (mod 5) .

Note that F10(z) is only supported on powers of q that are 3 mod

8 and
η (8z)5

η (16z)
is only supported on powers of q that are 1 mod 8.

This implies that the coefficients for h10(z) and h10(z) are 0 mod 5

whenever the power of q is not 1 or 3 mod 8. Since h10(z) and h10(z)
are Hecke eigenforms, we have for all primes p which are 5 or 7 mod 8
that h10(z)|T2,p,χ2 ≡ h10(z)|T2,p,χ2 ≡ 0 mod 5.

Using (3.1) and (3.2) we have

F10(z) ≡ 2
√
−2

(
h10(z)− h10(z)

)
(mod 5) .

This immediately implies that for any prime p such that h10(z)|T2,p,χ2 ≡
0 mod 5 that F10(z)|T2,p,χ2 ≡ 0 mod 5. In fact, (3.1) and (3.2) imply
even more. For any prime p, we have

F10(z)|T2,p,χ2 ≡


λ(p)F10(z) (mod 5) if p ≡ 1 (mod 8) ,

λ(p)
√
−2

η(8z)5

η(16z)
(mod 5) if p ≡ 3 (mod 8) ,

0 (mod 5) if p ≡ 5, 7 (mod 8) .
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The situation for F15(z) is very similar. In S2(Γ0(432), χ3), there

exist unique newforms h15(z) and h15(z) with q-series

h15(z) = q +
√
−27q7 +O(q12), h15(z) = q −

√
−27q7 +O(q12) .

By Theorem 3.1 we see that

h15(z) ≡ η (12z)5

η (36z)
+
√
−27F15(z) (mod 5) and

h15(z) ≡ η (12z)5

η (36z)
−
√
−27F15(z) (mod 5) .

Since F15(z) and η(12z)5/η(36z) are both only supported on powers
of q which are 1 mod 6, similar arguments show F15(z)|T2,p,χ3 ≡ 0 mod 5
whenever p is a prime which is 5 mod 6.

In S2(Γ0(2304), χ0), there exist unique newforms with the following
q-series

h20(z) =q −
√

12q7 + 2
√

12q13 − 8q19 +O(q25) ,

h′20(z) =q +
√

12q7 − 2
√

12q13 − 8q19 +O(q25) ,

g20(z) =q +
√

12q7 + 2
√

12q13 + 8q19 +O(q25) , and

g′20(z) =q −
√

12q7 − 2
√

12q13 + 8q19 +O(q25) .

We note that g20(z) and g′20(z) are twists of h20(z) and h′20(z), respec-
tively, by the character χ−1. We find that each of these newforms can
be written modulo 5 as a linear combination of F20(z), η(24z)5/η(96z),
η(24z)3η(96z), and η(24z)η(96z)3. Since none of these eta-quotients
are supported on powers of q which are 5 mod 6, we conclude that
F20(z)|T2,p,χ0 ≡ 0 (mod 5) whenever p is a prime which is 5 mod 6.

We conclude by remarking that all of the results in this section could
be proved using the theory of complex multiplication. For example, the
newforms h15(z) and h15(z) have complex multiplication by χ−3, which
implies that their q-expansions are only supported on powers congruent
to 1 mod 6. We direct the reader interested in more information on
this topic to [12].
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