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Abstract. We develop a new algorithm to compute a basis for
Mk(Γ0(N)), the space of weight k holomorphic modular forms on
Γ0(N), in the case when the graded algebra of modular forms over
Γ0(N) is generated at weight two. Our tests show that this algo-
rithm significantly outperforms a commonly used algorithm which
relies more heavily on modular symbols.

1. Introduction

Let N be a natural number and let k be an even natural number. A
weight k level N modular form is a function f(z) which is holomorphic
on the complex upper-half plane H = {z = x+iy : x, y ∈ R, y > 0} and
as it approaches the cusps, Q∪{i∞}, that satisfies the transformation
law

(1.1) f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all matrices

(
a b
c d

)
∈ Γ0(N) where

Γ0(N) =

{(
a b
c d

)
: a, b, c, d ∈ Z, N | c, ad− bc = 1

}
.

Modular forms play an important role in modern number theory—
they have been used to study a wide array of objects such as quadratic
forms, partitions, elliptic curves, and L-functions like the Riemann

zeta-function. Because

(
1 1
0 1

)
∈ Γ0(N), (1.1) tells us that each weight

k level N modular form is 1-periodic. If we set q = e2πiz, we can write
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a modular form as a Fourier series,

f(z) =
∑
n≥0

af (n)qn ,

where each Fourier coefficient af (n) ∈ C; often for a modular form
these Fourier coefficients are all rational numbers, or even integers,
and contain valuable combinatorial data.

We denote the set of all weight k levelN modular forms byMk(Γ0(N))—
this set is a finite dimensional vector space over C. Define

(1.2) B(N, k) =
Nk

12

∏
p prime, p|N

(
1 +

1

p

)
,

then dim(Mk(Γ0(N))) ≤ B(N, k) + 1, and each modular form f(z) ∈
Mk(Γ0(N)) can be uniquely identified by its Fourier coefficients af (n)
for n ≤ B(N, k). (For an exact formula for dim(Mk(Γ0(N))) see, for
example, Theorem 3.5.1 in [2].) If f(z) ∈ Mk(Γ0(N)) and g(z) ∈
M`(Γ0(N)) are two modular forms with the same level and possibly
different weights, it follows from (1.1) that f(z)g(z) ∈ Mk+`(Γ0(N))
and f(z) ∈Mk(Γ0(tN)) for any positive integer t.

Because interesting results are often obtained by studying what hap-
pens to modular forms when certain linear transformations are applied
to them, it becomes important to have an accessible basis for the rel-
evant space. The LMFDB (www.lmfdb.org) is online database of au-
tomorphic objects and describes bases of modular forms for a limited
number of weights and levels. While there are algorithms available to
find a basis for an arbitrary space of modular forms, the calculation
is computationally expensive, particularly if the weight of the space is
large.

This paper presents a new algorithm for calculating bases of weight
k modular forms on Γ0(N) where N is composite and Γ0(N) has no
elliptic points. We say z ∈ H is an elliptic point of Γ0(N) if there

exists some

(
a b
c d

)
∈ Γ0(N), with

(
a b
c d

)
6= ±

(
1 0
0 1

)
, such that

az + b

cz + d
= z. Whereas the most common algorithms for calculating such

bases heavily relies on related objects known as modular symbols, our
technique utilizes the structure of the graded ring of level N modular
forms,

M(N) =
⋃
k∈2N

Mk(Γ0(N)) .

While it has long been known thatM(1) is generated by level 1 modu-
lar forms of weight 4 and 6, recent work of Rustom [6] and Voight and
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Zureick-Brown [8] shows that M(N) is generated by level N modular
forms of weight k ≤ 6 for all N . In the case where N is composite
and Γ0(N) has no elliptic points, then M(N) is generated entirely by
weight two modular forms. This happens precisely for composite N ,
which will be referred to as “good” N throughout this paper, that
satisfy both of the following conditions:

(1) Either 4 | N or p | N for some prime p ≡ 3 (mod 4),
(2) Either 9 | N or p | N for some prime p ≡ 2 (mod 3).

We note that for any N , at least one of N , 2N , 3N , or 4N must satisfy
the above conditions. This implies the efficacy of the following.

Algorithm 1.1. Given k ∈ 2N and a good N , a basis for the space
Mk(Γ0(N)) is calculated by

(1) Calculating a basis B2 for M2(Γ0(N)) and
(2) Calculating products of k/2 members of B2 until dim(Mk(Γ0(N))

linearly independent modular forms are found.

In the next section, we compare the performance of this algorithm
against a standard algorithm that relies more heavily on modular sym-
bols. In particular, our computations show significant improvement in
both speed and memory usage, particularly for spaces of high weight.
In Section 3, we provide a detailed description of our implementation
of Algorithm 1.1, while in Section 4, we investigate building bases of
modular forms using a specific kind of modular form known as eta-
quotients.

2. Performance of Algorithm 1.1

We implemented Algorithm 1.1 using the open source computer al-
gebra system SageMath (referred to here simply as Sage). This system
provides extensive support for modular forms, including the ability
to calculate bases of modular forms for a wide array of congruence
subgroups. We compared the performance of our implementation of
Algorithm 1.1 against the built-in Sage algorithm for good N ≤ 198
and a range of weights. Sage’s internal algorithm calculates the Hecke
algebra on modular symbols to produce a substantial portion of each
basis and is very similar to the algorithm used by Magma, another
computer algebra system. Further details on Sage’s internal algorithm
are in [7]. As N and k increase, both the time and memory required
to complete the basis computation increase significantly, which limited
the number of weights for which we were able to test the two algorithms
for each good N . We will present here a portion of the data the tests
produced, which are typical of the overall results. The full data set can
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Weight
Sage

Time (sec)
Alg 1.1

Time (sec)

Sage
Memory

(MB)

Alg 1.1
Memory

(MB)
12 0.7 0.2 16.6 8.8
24 5.2 0.3 37.4 8.9
36 32.9 0.6 76.3 9.0
48 161.7 1.0 140.0 9.2
60 732.2 2.0 332.8 9.4
72 2171.7 2.8 672.8 9.6
84 6656.9 4.5 1394.9 9.9
96 15073.1 7.2 2640.8 10.3

Table 1. Level 8 Time and Memory Allocation Comparisons

Weight
Sage

Time (sec)
Alg 1.1

Time (sec)

Sage
Memory

(MB)

Alg 1.1
Memory

(MB)
4 1.2 0.6 15.5 11.6
8 14.2 1.0 97.0 12.4
12 98.6 2.0 227.5 13.1
16 566.9 3.0 501.8 13.8
20 2071.7 10.5 1326.3 14.5
24 12727.2 23.3 2972.3 15.3

Table 2. Level 36 Time and Memory Allocation Com-
parisons

be found at http://educ.jmu.edu/~webbjj/modformcalc. Our ex-
periments were run on a 24-core AMD Opteron 6344 server with 64GB
of RAM running Sage 6.4.1 in CentOS 6.8.

Level 8. For level 8, both algorithms were tested for all even weights
k ≤ 100. In Table 1, we focus on weights that are multiples of 12. The
time for Sage’s algorithm to complete roughly tripled and the memory
allocation doubled for each increase in the weight by 12, while Algo-
rithm 1.1’s time at most doubled, and the memory allocation increased
linearly. At weight 96, which has dimension 97, Sage’s algorithm took
over 4 hours to compute a basis, while Algorithm 1.1 computed the
basis in just over 7 seconds, with a smaller memory allocation by a
factor of over 250.

Level 36. For level 36, Sage’s algorithm was tested for all even weights
up to 24, while Algorithm 1.1 was tested up to weight 62. In Table 2,
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Weight
Sage

Time (sec)
Alg 1.1

Time (sec)

Sage
Memory

(MB)

Alg 1.1
Memory

(MB)
4 13.7 2.1 65.0 21.0
6 76.4 4.5 527.2 25.1
8 324.9 12 730.1 29.8
10 1097.2 32.3 1963.3 38.3

Table 3. Level 105 Time and Memory Allocation Com-
parisons

Weight
Sage

Time (sec)
Alg 1.1

Time (sec)

Sage
Memory

(MB)

Alg 1.1
Memory

(MB)
4 245 14.9 531.7 79.0
6 2196.4 29.4 2915.0 107.4
8 12922.0 54.1 10398.4 139.3
10 30895.8 102.3 25693.9 170.0

Table 4. Level 198 Time and Memory Allocation Com-
parisons

we focus on weights that are multiples of 4. At weight 24, which has
dimension 144, Algorithm 1.1 calculates the basis faster by a factor of
over 500, while using substantially less memory. At weight 62, which
has dimension 372, it does take Algorithm 1.1 over 6 hours to calculate
a basis, but only uses 23.7 MB of memory.

Level 105. At level 105, Sage’s algorithm was tested up to weight 10,
while Algorithm 1.1 computed bases up to weight 30. We omit the data
for weight 2 when both algorithms are essentially identical. In Table
3, we see again that both the time and memory allocation increase at
a much faster rate than those for Algorithm 1.1. At weight 30 where
the dimension is 468, Algorithm 1.1 computed a basis in 36 hours and
uses only 364.2 MB of memory.

Level 198. The highest level we compared the two algorithms was
198, where Sage’s algorithm was tested up to weight 10, and Algo-
rithm 1.1 was tested up to weight 18. Table 4 shows Algorithm 1.1
performed significantly better again. At weight 18 where the dimen-
sion is 620, Algorithm 1.1 computed a basis in 2.5 hours, using 350.7
MB of memory.
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3. Implementation of Algorithm 1.1

Our source code for the implementation of Algorithm 1.1 is available
at http://educ.jmu.edu/~webbjj/modformcalc/main.sage. While
Sage has robust support for modular forms, we found it necessary to
define a new object class for modular forms which involves the graded
algebra structure. In particular, for a given basis of M2(Γ0(N)), we
save the representation of each modular form as a linear combination
of products from this basis as well as the Fourier expansion. This repre-
sentation is useful if it is necessary to calculate the Fourier coefficients
of the forms to a much higher degree, such as when one is calculating
the action of Hecke operators on the space. In this case, it suffices
to calculate the additional Fourier coefficients of the weight two ba-
sis forms and then use this representation to quickly lift the accuracy
to a higher degree. All of our calculations are performed over Q, al-
though any other fields could be substituted without needing to make
significant changes.

Algorithm 1.1 begins by calculating a basis for M2(Γ0(N)). The
authors found that Sage’s internal algorithm for computing bases of
modular forms is extremely efficient at weight two, although in Sec-
tion 4 an alternate method which computes a basis of weight two eta-
quotients is detailed. With this basis in hand, we now start calculat-
ing forms in our desired space, Mk(Γ0(N)). At all times, our saved
set of linearly independent weight k forms is upper triangular, which
we now describe. For a modular form f(z) =

∑
n≥0 af (n)qn, we let

v∞(f) = min{n : af (n) 6= 0} denote the degree of vanishing (also
called the degree of the zero) of f at the cusp i∞. We say that a set
{g1, . . . , gt} is upper triangular if v∞(g1) < v∞(g2) < . . . < v∞(gt),
that is, the degrees of vanishing at i∞ of the basis forms are strictly
increasing. As with upper triangular matrices generally in linear alge-
bra, upper triangular bases of modular forms often are very efficient
in calculations. In particular, the following simple iterative procedure
determines if another form f is a linear combination of g1, . . . , gt and,
if not, finds a form to adjoin to the set that keeps it upper triangular.

Algorithm 3.1. The upper triangular set B = {g1, . . . , gt} and f are
taken as input. Let gi =

∑
n≥ni agi(n)qn where ni = v∞(gi) and f =∑

n≥n0
af (n)qn. For 1 ≤ i ≤ t, check v∞(gi) and v∞(f):

• If v∞(gi) = v∞(f) then

– Replace f with f − af (ni)

agi (ni)
gi.

– If this new f = 0, then the original f is in the span of B
and B is returned unchanged. If f 6= 0, increase i to i+ 1.
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• Else if v∞(gi) > v∞(f) then
– Insert f into the i-th position of B, shifting the index of
gi, . . . , gt up by 1, and

– Return B and stop the algorithm.
• Else if v∞(gi) < v∞(f) then increase i to i+ 1.

After the check for i = t, if f 6= 0, then f is inserted into the t + 1-th
position of B. This larger B is returned and the algorithm ends.

To cut down on the number of multiplications needed, we save some
information from the intermediate steps. So, for example, if we let
{f1, f2, . . . , ft} be the weight 2 basis, the first weight k form computed

will be f
k/2
1 . This form becomes the first member of B, our set of

linearly independent weight k forms. We save f 2
1 , f

3
1 , . . . f

k/2−1
1 along

the way, because then f
k/2−1
1 f2, f

k/2−1
1 f3, . . . , f

k/2
1 ft can then be com-

puted with only one additional multiplication for each. Now f
k/2−1
1 can

be discarded, f
k/2−2
1 will be multiplied by f2, this is saved, and then

f
k/2−2
1 f 2

2 , f
k/2−2
1 f2f3, . . . , f

k/2−2
1 f2ft are each computed. The search

continues in this manner. After each new weight k form that is calcu-
lated, we check if it is in the span of B, and if not, adjoin a suitable form
to B that keeps it upper triangular. Once B contains dimMk(Γ0(N))
forms, it is a basis for the space and the search concludes.

In our initial tests, we found that the order of the forms in the weight
two basis could significantly affect the speed of the search. If the initial
weight two basis was upper triangular, then we have

v∞(f
k/2
1 ) < v∞(f

k/2−1
1 f2) < . . . < v∞(f

k/2−1
1 ft)

so they together are linearly independent and upper triangular—the
first t elements of B have been found. While it is quick to take the
given weight two basis and produce an upper triangular basis out of it,
this complicates the representation of the form in terms of the original
basis which is being saved along with Fourier expansion of each form;
in turn, this bogs down the calculation of the higher weight forms’
representations. Looking closely at Algorithm 3.1, if {g1, . . . , gt} is
the upper triangular basis produced by iterating this algorithm on the
original weight 2 basis, then there is a re-ordering of this original basis
{fσ(1), fσ(2), . . . , fσ(t)} such that g1 = fσ(1) and gi is in the span of
fσ(1), . . . , fσ(i) for all i > 1. This implies that for each i, the algebra
generated by fσ(i), . . . , fσ(i) is equal to that generated by g1, . . . , gi. We
use this reordered basis in our implementation because it guarantees
that many forms in our basis will be found at the beginning of the
search, while keeping the the representation of the forms in terms of the
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original weight two basis relatively simple. Utilizing this idea of finding
forms with different degrees of vanishing at i∞, we simultaneously run
the search starting at different places. To be precise, while we start

with f
k/2
σ(1) and start swapping higher indexed forms into the product,

we also look at f
k/2
σ(t) and swap in lower indexed forms, and even with

f
k/2
σ(bt/2c), where we make two more branches of the search by swapping

in higher or lower indexed forms.
We note that this search algorithm we employed is straight-forward.

Potentially, this can optimized much further. However, as seen in the
data of the previous section, this implementation shows tremendous
improvements over the current algorithm used to calculate bases of
modular forms.

4. Building bases with eta-quotients

Dedekind’s eta function, η(z) is defined as

(4.1) η(z) = q
1
24

∏
n≥1

(1− qn) = q
1
24 (1 +

∑
n≥1

(−1)n(q
n(3n+1)

2 + q
n(3n−1)

2 ) .

This function plays an important role in number theory. For example,
1/η(z) is a generating function for partitions and η(z)24 = ∆(z) is
Ramanujan’s Delta function, also known as the modular discriminant
function.

For some N > 0, we say a function f(z) is a level N eta-quotient
if f(z) =

∏
δ|N η(δz)rδ, where each rδ ∈ Z. Such an f(z) is a modular

form in Mk(Γ0(N)) precisely when

• it is holomorphic at the cusps,
• the sums

∑
δ|N δrδ,

∑
δ|N

N
δ
rδ are both divisible by 24, and

•
∏

δ|N δ
rδ is a rational square,

where the weight k = 1
2

∑
δ|N rδ. See [4], Section 1.4, for further details.

The representation of η(z) as a sum in (4.1) means that the calcula-
tion of Fourier expansions of eta-quotients is computationally straight-
forward. For this reason, it is natural to ask when a modular form
can be represented in terms of eta-quotients. In [5], Rouse and the
fourth author found that the entire graded algebra of level N mod-
ular forms, M(N), is generated by level N eta-quotients if and only
if M2(Γ0(N)) is generated by eta-quotients. While this implies that
Γ0(N) does not have elliptic points, this is not a sufficient condition
forM(N) to be generated by eta-quotients. For example, Γ0(68) does
not have elliptic points and, hence, M(N) is generated by weight two
forms, but M2(Γ0(68) is not generated by level N eta-quotients. There
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are precisely 121 levels N ≤ 500, identified in [5], such that M(N)
is generated by level N eta-quotients. To find such N , Rouse and
the fourth author enumerated all of the eta-quotients in M2(Γ0(N)) by
finding which tuples of exponents (rδ)δ|N satisfied the conditions above,
and then checking the dimension of the space spanned by these forms.

In the current work, we calculated eta-quotients using the the possi-
ble orders of vanishing these forms can have at the cusps to build bases.
In more technical terms, we found eta-quotients in M2(Γ0(N)) by their
divisors on the modular curve X0(N). From (4.1), η(z) is non-zero
on H, so all of the zeros (and poles) of an eta-quotient must occur at
the cusps. The following result of Ligozat [3] calculates the order of
vanishing of an eta-quotient at a rational cusp.

Theorem 1. Let c, d and N be positive integers with d|N and gcd(c, d) =
1. If f(z) is an eta-quotient, then the order of vanishing of f(z) at the
cusp c/d is

N

24

∑
δ|N

gcd(d, δ)2rδ
gcd(d,N/d)dδ

.

We note that the order of vanishing at c/d depends on the denom-
inator d, but not on the numerator c, and the total number of zeros
of a weight k modular form (including multiplicities) is B(N, k) from
(1.2). These relations create a linear transformation from tuple of ex-
ponents (rδ)δ|N to the divisor of the eta-quotient—this transformation
must be invertible because divisors of modular forms are unique up to
constant multiples and all eta quotients have 1 as their first non-zero
coefficient. To find eta-quotients in M2(Γ0(N)), we inverted the d(N)
by d(N) matrix generated by Ligozat’s relations, where d(N) is the
number of divisors of N , and applied it to possible divisors of weight
two level N eta-quotients. The advantage of this approach is that the
set of possible divisors is significantly smaller than the set of possible
d(N) tuples of exponents (see [1] or [5] for sharp bounds on the size of
exponents for eta-quotients).

In our search for level N eta-quotients to build a basis, we employ
the following additional strategies. Because M2(Γ0(δ)) ⊂ M2(Γ0(N))
for all δ | N , we begin our search initially in the smaller spaces. For
each eta-quotient f(z) ∈ M2(Γ0(δ)), we use that f(tz) ∈ M2(Γ0(N))
for all t|(N/δ) will be an eta-quotient as well. Finally, we used that if
f(z) is an eta-quotient in M2(Γ0(N)), then its image under the Fricke
involution (in short, swapping the exponents rδ and rN/δ for each δ | N)
is also an eta-quotient in the space.
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Weight
Sage

Time (sec)
Alg 1.1

Time (sec)
eta-Quotient
Time (sec)

12 0.7 0.2 0.3
24 5.2 0.3 0.3
36 32.9 0.6 0.7
48 161.7 1.0 1.1
60 732.2 2.0 1.6
72 2171.7 2.8 2.9
84 6656.9 4.5 4.7
96 15073.1 7.2 7.9

Table 5. Level 8 Time Comparisons with eta-Quotient
Algorithm

Weight
Sage

Time (sec)
Alg 1.1

Time (sec)
eta-Quotient
Time (sec)

4 1.2 0.6 1.0
8 14.2 1.0 1.4
12 98.6 2.0 3.7
16 566.9 3.0 21.7
20 2071.7 10.5 31.0
24 12727.2 23.3 304.9

Table 6. Level 36 Time Comparisons with eta-
Quotient Algorithm

Weight
Sage

Time (sec)
Alg 1.1

Time (sec)
eta-Quotient
Time (sec)

4 13.7 2.1 545.6
6 76.4 4.5 612.8
8 324.9 12 1326.0
10 1097.2 32.3 8815.8

Table 7. Level 105 Time Comparisons with eta-
Quotient Algorithm

Tables 5 – 7 show some time comparisons of using eta-quotients to
compute bases for higher weight spaces. We omit the memory usage
information because the amount of memory used by eta-quotient algo-
rithm and Algorithm 1.1 is very similar. Our data shows that for small
N , the eta-quotient algorithm outperforms Sage’s internal algorithm,
but is generally slower than Algorithm 1.1. As N increases, and the
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total number of eta-quotients in M2(Γ0(N)) grows, the performance of
the eta-quotient algorithm declines significantly.

5. Conclusions and future work

Our data gives clear evidence that Algorithm 1.1 outperforms the
current processes that are used to compute bases of modular forms for
these good levels N both in terms of time and computer memory usage.
Considering that for a general level N , the graded algebra of modular
formsM(N) is generated by forms of weight no more than 6, this work
raises the question of whether this approach generalizes effectively to
compute any space Mk(Γ0(N)).
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