
MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

1. Polynomial rings (review)

Definition 1. A polynomial f(x) with coefficients in a ring R is

f(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n

where all ai ∈ R, an 6= 0, and n ∈ Z+. We call an the leading coefficient of f(x). The degree of f(x) is n (we

write deg f(x) = n) and x is called an indeterminate. The set of all polynomials with coefficients in R is denoted

R[x] (“R adjoin x”).

Theorem 1. R[x] is a ring under polynomial addition and multiplication. For polynomials f(x) =
∑n
i=0 aix

i and

g(x) =
∑m
i=0 bix

i in R[x], we define their sum and product as follows:

• f(x) + g(x) =

• f(x) · g(x) =

Theorem 2. Let R be a ring.

(a) If R is a commutative ring, so is R[x].

(b) If R has a unity 1 6= 0 then 1 is also the unity of R[x].

(c) If D is an integral domain (contains no zero divisors), then so is D[x].

Proof. Parts (a) and (b) are clear from the definition of multiplication above. Part (c) we proved in homework in

MATH 430; the general idea is that if polynomials f(x) =
∑n
i=0 aix

i and g(x) =
∑m
i=0 bix

i in D[x] are not zero

themselves, then at least an and bm (the leading coefficients) are nonzero. Then the polynomial f ·g contains the term

anbmx
n+m (which is nonzero since D was an integral domain) so fg(x) is a nonzero polynomial. �

Given a ring R and indeterminates x and y, elements of (R[x])[y] are polynomials in y with coefficients which are

polynomials in x: g(y) = f0(x) + f1(x)y + f2(x)y2 + · · ·+ fn(x)yn. By multiplying out and combining like terms, we

get g(x, y) = a0 + a1,0x + a0,1y + a1,1xy + a2,0x
2 + · · · + am,nx

myn, a polynomial in x and y. This process can be

repeated iteratively, so that we have the following definition.

Definition 2. ((((R[x1])[x2])[x3]) . . . )[xn] = R[x1, x2, . . . , xn] is the ring of polynomials in n indeterminates with

coefficients in R.

If F is a field, then F is also an integral domain, so F [x] is an integral domain. It is NOT a field, since there is no

polynomial f(x) so that xf(x) = 1 (so x has no multiplicative inverse). However, we learned in the Part 1 notes how

to extend an integral domain to its field of quotients.

Theorem 3. For a field F , F (x) is the field of quotients of the integral domain F [x]. As a set,

F (x) =

The proof (by construction) that F (x) is the field of quotients of F [x] follows the outline of the Part 1 notes!
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2. Zeroes of polynomials

We spent a lot of energy in previous courses (for example, high school algebra, or calculus) solving equations, and in

particular polynomials. This is equivalent to finding the zeroes of polynomials, and in this section we will relate that

problem to one we encountered in MATH 430. This will give us more powerful tools to study the zeroes of polynomials,

and in particular where they live.

For all that follows, let E be a field and let F be a subfield of E.

Theorem 4. Let α ∈ E and let f(x) ∈ F [x] where f(x) = a0 + a1x+ · · ·+ anx
n. Then φα : F [x]→ E defined by

φα(f(x)) = a0 + a1α+ · · ·+ anα
n

is a ring homomorphism. We call this map evaluation at α and we will denote φα(f(x)) as f(α).

Proof sketch. Let f(x) =
∑n
i=0 aix

i and g(x) =
∑m
i=0 bix

i be elements of F [x]. Use the formulas for addition and

multiplication of polynomials given in Theorem 1 and the definition of φα to show that φα(f(x) + g(x)) = φα(f(x)) +

φα(g(x)) and φα(f(x) · g(x)) = φα(f(x)) · φα(g(x)).

We should note that since the representation of a polynomial f(x) ∈ F [x] is unique up to adding or removing terms

of the form 0xi, and φα(0xi) = 0 · αi = 0 for all i ≥ 0, the map φα is well-defined. �

Corollary 5. With all notation as above, φα(x) = α and φα restricted to F is an isomorphism.

This corollary might seem a little silly at first glance, but it is actually a powerful idea.

Definition 3. For f(x) ∈ F [x], if f(α) = 0 then α is a zero of f(x).

Example 1. Give two examples of elements of kerφ3. Describe all elements of kerφ0. What is kerφπ?

Then finding zeroes of a polynomial f(x) can be rephrased as determining the values of α such that φα(f(x)) = 0.

While this doesn’t seem like a big change, remember that we have a lot of machinery about homomorphisms that can

be put to use if we phrase the problem this way!

3. Factorization of polynomials over fields

As before, let E be a field and let F be a subfield of E. Suppose f(x) ∈ F [x] factors into the product of two

polynomials in F [x] so that f(x) = g(x)h(x). For α ∈ E,

f(α) = φα(f(x)) = φα(g(x)h(x)) = φα(g(x))φα(h(x)) = g(α)h(α)
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since evaluation is a homomorphism, so if f(α) = 0 then either g(α) = 0 or h(α) = 0. Then factoring polynomials

reduces the amount of work we have to do to find zeroes of polynomials, since we can simply find the zeroes of the

factors which are, at least in theory, simpler than the original polynomial.

Before we dive into factoring though, we need a few preliminary results. The first one looks like the Euclidean

algorithm for integers, but rephrased in terms of polynomial division.

Theorem 6 (Division algorithm for polynomials). Let f(x), g(x) ∈ F [x] of degree n and m respectively. There exist

unique polynomials q(x) and r(x) such that

f(x) = g(x)q(x) + r(x)

where either r(x) = 0 or deg r(x) < deg g(x). (q(x) is the quotient of f(x) and g(x) and r(x) is the remainder.)

How do we know that a polynomial g(x) is a factor of f(x) over F based on the division algorithm?

Corollary 7 (Factor Theorem). An element a ∈ F is a zero of f(x) ∈ F [x] if and only if

Proof:

Corollary 8. A nonzero polynomial f(x) ∈ F [x] of degree n can have zeroes in the field F .

(Recall that R∗ is the multiplicative group of a ring R, the group of units under multiplication. Since F is a

field, all nonzero elements are units, so F ∗ is the group of nonzero elements of F under multiplication.)

Corollary 9. If G is a finite subgroup of F ∗, then G is cyclic. If F is finite, then F ∗ is cyclic.

Proof:
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Definition 4. f(x) ∈ F [x] is irreducible over F (or is an irreducible polynomial in F [x]) if f(x) cannot be

expressed as the product of polynomials in F [x] of strictly smaller degree than f . (Otherwise, f is reducible.)

Example 2. f(x) = x2 − 2

Definition 4 suggests an analogy between irreducible polynomials in F [x] and prime numbers in Z that will persist.

The next two results should feel very familiar, especially if you try to rephrase them using prime numbers instead.

Theorem 10. Let p(x) be an irreducible polynomial in F [x]. If p(x) divides r(x)s(x) for r(x), s(x) ∈ F [x] then

If p(x) divides r1(x)r2(x) . . . rn(x) for ri(x) ∈ F [x] then

Theorem 11. If F is a field, then every polynomial f(x) ∈ F [x] can be written as a product

f(x) = u · p1(x)p2(x) . . . pk(x)

where u is a unit in F , and the pi(x) ∈ F [x] are all monic and irreducible. Moreover, this product is unique up to

reordering the pi(x).

There are a number of easy criteria that will tell us whether a polynomial factors over some field.

Theorem 12. Let f(x) ∈ F [x] with deg f(x) = 2 or 3. Then f(x) is reducible over F if and only if

This is a very nice theorem, but only works for small degree polynomials. What if we are dealing with a degree

larger than three? It turns out that at least if we are trying to factor over Q, there are some very handy results.

Theorem 13. If f(x) ∈ Z[x], then f(x) factors into a product of two polynomials of lower degrees r and s in Q[x] if

and only if it has a factorization with polynomials of the same degrees r and s in Z[x].

Proof sketch. One direction is very clear. For the other, assume there exists a factorization over Q[x]; the idea is to

clear denominators sufficiently to get the factors to have integer coefficients. �

Corollary 14 (Rational Root Theorem). If f(x) ∈ Z[x] is of the form f(x) = a0 + a1x+ · · ·+ anx
n with a0 6= 0, and

if f(x) has a zero s
t in Q, then s|a0 and t|an. In particular, if f(x) is monic and has a zero in Q then f(x) has a zero

m in Z and m must divide a0.

Example 3. Use this corollary to explain why x2 − 2 is irreducible over Q.

Example 4. Show that f(x) = x4 − 2x2 + 8x+ 1 is irreducible over Q.
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The next result should be very surprising; given mild conditions on the coefficients of an integer polynomial that

concern a single prime number, we can deduce irreducibility over Q!

Theorem 15 (Eisenstein Criterion). Let p ∈ Z be a prime. Suppose that f(x) = a0 + a1x+ · · ·+ anx
n is in Z[x], and

an 6≡ 0 mod p but ai ≡ 0 mod p for all i < n, and a0 6≡ 0 mod p2. Then f(x) is irreducible over Q.

Corollary 16. The polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q for any prime p. (The polynomial Φp(x) is called the pth cyclotomic polynomial.)

Proof:

Our last few results deal with factorizations over R and C.

Lemma 17. Every nonconstant polynomial in C[x] has a complex root. Thus, the irreducible polynomials in C[x] are

Corollary 18. If f(x) ∈ C[x] has degree n, then f(x) has exactly n zeroes if

Example 5. f(x) = (x2 + 1)(x− 1)3(x+ 7i)10

Lemma 19. Suppose f(x) ∈ R[x]. If a+ bi is a root of f(x) over C, then so is a− bi.

Proof:

Theorem 20. All polynomials which are irreducible over R are

Proof:


